

Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

Catarina Serafim & Ruth Peacock

International Workshop on Breakdown Science and High Gradient Technology (HG2022) - 18th May 2022

COMPARATIVE MATERIAL STUDY OF BREAKDOWN THRESHOLD AND ROBUSTNESS TO LOW-**ENERGY PROTON IRRADIATION**

Authors: Catarina Filipa Da Palma Serafim, Ruth Peacock, Walter Wuensch, Sergio Calatroni, Ana Teresa Perez Fontenla, Alexej Grudiev, Alessandra Lombardi, Stefano Sgobba, Suitbert Ramberger, Giulia Bellodi, Edgar Sargsyan - CERN Organisation Européenne pour la Recherche Nucléaire, Geneva, Switzerland

RFQ H- Beam Loss Damage — Irradiated Electrode — Condition in the Pulsed DC System

Microscopy Analysis

1000

Copper OFE

42 Irrad Cu No. BD

45 Cu No. BD

42 Irrad Cu E-Field

RFQ vane damage due to H- Beam loss

Linear Accelerator (LINAC) 4

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

Irradiation of Cathodes for Pulsed DC Tests

Irradiation

	2020	2021							2022	
	Cu-OFE	Nb	CuCr1Zr	CuCr1Zr	Ti6Al4V	Та	Nb	Cu-OFE	CuBe2	Cu-OFE
Pair of electrodes	#40_RFQ	#43_RFQ	#50_RFQ	#50_RFQ (V2)	#47_RFQ	#XX_RFQ	#44_RFQ	#42_RFQ	#_RFQ	#_RFQ
Start Date	14/10/20 20	26/01/20 21	01/02/202 1	03/09/202 1	27/10/20 21	10/12/202 1	13/12/202 1	16/12/2021	25/03/2022	29/03/2022
Start Time	18h00m	13h00m	13h00m	17h00m	12h50m	17h40m	16h23m	16h29m	15h00m	15h00m
End Date	16/10/20 20	01/02/20 21	03/02/202 1	06/09/202 1	29/10/20 21	12/12/202 1	15/12/202 1	18/12/2021	27/03/2022	31/03/2022
End Time	08h30m	09h00m	14h00m	09h00m	19h40m	23h40m	20h17m	22h32m	21h25m	23h43m
Time of irradiation	40h	140h	50h	64h	55h	54h	52h	54h	55h	56h
Total N of H-	1.20E+19	4.88E+18	9.80E+18	1.31E+19	1.20E+19	1.20E+19	1.20E+19	1.20E+19	0.92E+19	1.16E+19
Current	22 - 31 mA	16 mA	16 mA	20 mA	20 mA	17 mA	21 mA	20 mA	18.5 mA	19.3 mA
Pulse length	600 us	600 us	600 us	600 us	600 us	600 us	600 us	600 us	600 us	600 us

Pulsed DC Large Electrode System

Configuration

- 2 high precision machined electrodes (1µm tolerances)
- High tolerance ceramic spacer between electrodes providing a gap of 20µm, 40µm, 60µm, or 100µm
- Ceramic spacers to isolate electrodes from the chamber
- 4. 4 Windows and 2 perpendicular cameras
- 5. High voltage feed though
- Vacuum pump output (5x10^-9)
- Connection from the bottom electrode to ground (outside of system)

The MARX generator can pulse up to a rep rate of 6kHz and a minimum pulse length of 1µs.
Measurements of the voltage and current supplied during a breakdown are measured whenever a breakdown is detected.

Normalised Field: Including effect of gap distance

<u>Iaroslava Profatilova - https://indico.cern.ch/event/774138/contributions/3507941/attachments/1911936/3160618/7_IProfatilova_MeVArc2019.pdf</u> <u>Alexej Grudiev - https://indico.cern.ch/event/925403/contributions/3889048/attachments/2050505/3436872/20200604_WP_RFQ3_design_Introduction.pdf</u>

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

Normalised Field Holding Calculations

- The surface field in the RFQ is 34MV/m, the target surface electric field for this electrode test was 35 MV/m
- 35MV/m with a gap of $60 \mu m$ gives a voltage of 2100V and a normalised field holding of 0.3915
- The normalised field holding of the RFQ is 1.0563 giving a voltage of 5664.9V and surface electric field for a 60µm gap of 94MV/m
- Assuming the gap size scaling holds we would need to reach a field of 94MV/m in the Pulsed DC System
- We first went to a field of 35MV/m then attempted to increase to 94MV/m

Pulsed DC System Breakdown Localisation

(2019). Breakdown localisation in a pulsed DC electrode system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 953. 10.1016/j.nima.2019.163079.

Radius(mm)

Titanium Alloy (TiAl6V4)

30

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

900

Copper OFE

Copper OFE Radius(mm) -10 -20 -30 -20 -10 -30 Radius(mm) 200^(mm) Kadius -10 Pulses 1e8 -15 42 Irrad Cu E-Field 42 Irrad Cu No. BD -20 -20 -10 45 Cu E-Field 45 Cu No. BD . Radius(mm)

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

Niobium (Nb BCP)

30

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

160

Tantalum (Ta)

Copper Chromium Zirconium (CuCrZr)

• 50 Irrad CuCrZr E-Field — 50 Irrad CuCrZr No. BD

Summary

- Titanium performed the best both with and without irradiation, and after a cluster in breakdowns reducing the electric field.
- Copper appears to reach the same electric field with an initial increase in the number of breakdowns that conditions away irradiated defects.
- Niobium and Tantalum both had a significant reaction to the irradiation causing a large cluster in breakdowns that it was not possible to recover from.
- Copper Chromium Zirconium tested only with irradiation was not able to condition very high.

Blister formation is observed in the Cu based electrodes. The high density of blisters is coincidence with the irradiated zones. The blisters locations seems to have no influence on the formation of the breakdowns.

No blisters were observed on the Ta, TiAl6V4and Nb electrodes.

Titanium Alloy (TiAl6V4)

Titanium Alloy (TiAl6V4)

Copper OFE

LES and Irradiation Cu (1st pair)

Transition between irradiation and not irradiation zone.

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

LES and Irradiation Cu (1st pair)

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

Niobium (Nb)

Niobium (Nb)

Niobium (Nb)

EHT = 10.00 kV

Signal A = SE2

WD = 14.2 mm Signal A = SE2 Sample ID = Nb_cathode_irrad_LES_ Mag = 1.00 K X

EN

Catarina Serafim

Mag = 5.00 K X

WD = 9.4 mm Sample ID = Nb_cathode_irrad_LES_ Date: 27 May 2021

Tantalum (Ta)

Catarina Serafim & Ruth Peacock | Comparative material study of breakdown threshold and robustness to low-energy proton irradiation

Copper Chromium Zirconium (CuCrZr)

home.cern