COPROPAGATING SCHEMES FOR DIELECTRIC LASER ACCELERATORS (DLAS)

G. Torrisi, D. Mascali, G. S. Mauro, A. F. Usmani (INFN/LNS, Catania),

M. M. Costanza (DIEEI, Catania),

A. Bacci (INFN-Milano, Milano),

G. Sorbello(INFN/LNS, Catania; University of Catania, Catania),

C. De Angelis, A. Locatelli (University of Brescia, Brescia)

INTRODUCTION AND MOTIVATION

Dielectric Laser Accelerators (DLA)

 Dielectrics are characterized by larger damage threshold (multi-GV/m) with respect to metals.

· Reduction of cost and size.

Parameter	SLAC [Peralta 2013]	MPQ/FAU [Breuer 2013]	Stanford [Leedle 2015a]	FAU/Stanford [Kozak 2016]	SLAC [Wootton 2016]
Material	Fused Silica	Fused Silica	Silicon	Silicon	Fused Silica
Incident Beam Energy	60 MeV	28 keV	96.3 keV	28 keV	60 MeV
Particle Velocity (v/c)	0.9996	0.32	0.54	0.32	0.9996
Laser Wavelength	800 nm	790 nm	907 nm	1800 nm	800 nm
Laser Repetition Rate	10 Hz	2.7 MHz	76 MHz	100 kHz	10 Hz
Laser Pulse Energy	330 µJ	160 nJ	5.2 nJ	50 nJ	128 µJ
Pulse Duration	1.24 ps	110 fs	130 fs	20 fs	64 fs
Interaction Length	450 µm	11 µm	5.6 µm	1.8 µm	16.3 µm
Max. Energy Gain	120 keV	275 eV	2.05 keV	0.3 keV	24 keV
Max.Gradient	310 MeV/m	25 MeV/m	370 MeV/m	210 MeV/m	690 MeV/m

DLA Experimental Results

PC DLAs geometries: [R.J. England et al., Dielectric laser accelerators, Rev. Mod. Phys., 2014]

Photonic crystal (PC) based accelerators:

- Dielectric structures with advanced light manipulation capabilities.
- Hollow-core guiding with strong field confinement.
- Phase velocity control for synchronous acceleration.
- High intensity of the accelerating (longitudinal) field.
- Group velocity and timing control large Interaction length.
- Suppression of higher-order modes.

