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Local Unitarity: framing the problem

A cross-section admits a perturbative expansion when a < 1

o= atolV
L=1

The coefficients of the power series can be obtained by “squaring the S-matrix”
~1Q2 _ i

The coefficients can be represented as a sum of interference diagrams

c2) — {> I <]> I >\X> I {Z} ,\ffutkoskycut

Each side of Cutkosky cut corresponds to a diagram building up the S-matrix
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Interference diagrams themselves can be represented as integrals of amplitudes
d4p1 d4p2 a
_ 5(H) (p2) 5 (p2) 54 _ .
/ (27_‘_)4 (27_‘_)4 (pl) (p2) (pl P2 Q) -

Phase space integral

=1 [ s ot + - - (<

Problem: both types of integrals are divergent!

d1 4
C_I2l \ — / d’Fk e Collinear divergences 41 / / g2 _
D1 D5 Ds Non-integrable

e Soft divergences (@1 = 0

 Thresholds } Integrable
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Loop integrals d*k > dgﬁ

LTD/cLTD/TOPT
Causal flow

Infrared singularities Infrared singularities
Final state singularities (FSS) < N » Final state radiation (FSR)
Initial state singularities (ISS) theorem Initial state radiation (ISR)

Integrable singularities

Loops

This subdivision hides an inherent simplicity

Integrals
ISS + ISR
Integrable singularities

Trees

IR singularities appear in separate pieces of the computation of LHC observables,
but not in the final result (IR-safety)

Forcing IR-safety to be realised locally loosens the distinction between phase space
and loop integrals
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Our objective

Computing cross-sections fully numerically by locally combining real and virtual
contributions

That is: Find a representation of perturbative cross-sections in the form
o0
L
o = E ozL/dHLJ((i )
L=1
where UéL) IS an integrable function, can be MonteCarlo integrated.

This can be achieved with no subtraction and dimensional regularisation

Using robustness of MonteCarlo methods to automate fixed order corrections
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o0
L L
Objective: O — E 87 dHLO'((i )
L=1

L
Monte Carlo methods are fine, but how do we construct 0((5{ >?

Want method to be generic (scattering process and perturbative order) and
competitive, yield new results in reasonable time with limited resources

Studying this we learn about

e The singular structure of amplitudes in momentum space

* The singular structure of phase space integrals

Conceptual shift: from amplitudes+phase space integrals to interference diagrams
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Real and virtual contributions

41 \({2 ¢
. . . . q2 = Iq1
Interference diagram may have a collinear singularity, e.g. q3 <

This sum of diagrams is finite in this collinear limit (KLN theorem)

di
> (4 c.c)
Virtual Real emission

Sum over all the Cutkosky cuts of the double triangle is finite in any IR limit

D= [ (D)

Problem: there is a difference in dimensionality between phase space and loop integrals

B35
(- gpdtkea+ 1=~ Qo) q

3743 . .
% L 5 + 15— Kl + 1F — @ — Qo) p\‘ 7k

2[p] 2|k|
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Loop Tree Duality

The LTD representation allows for explicit integration of the energy components using
residue theorem

- M N M
4 _ 37,
/mgldkm_ 5=/ ] &% fua

With this result, both loop and phase space integrals are defined over 3D space

Catani, Gleisberg, Krauss, Rodrigo, Winter Runkel, Sz6r, Vesga, Weinzierl Verdugo, Driencout-Mangin, et al.
arXiv: 0804.3170 (2008) arXiv: 1902.02135 (2019) arXiv: 2001.03564 (2020)

Bierenbaum, Catani, Draggiotis, Rodrigo ZC, Hirschi, Kermanshah, Ruijl ZC, Hirschi, Kermanshah, Pelloni, Ruijl
arXiv: 1007.0194 (2010) arXiv: 1906.06138 (2019) arXiv: 2009.05509 (2020)

Automation of LTD and cLTD (arbitrary loops, topologies, numerators)

) N
- /d k(lC2 —1€)((k —p1)? —i€)((k + p2)* — ie)

Analytically continue energy component. Close the contour in the lower complex plane.
Poles are:

Example:

N
/

( — .
Re[kf] | +" = \/|k|2 — 1€ Im[(”] <0 1
<k0:p(1)‘|‘\/‘lg_ﬁl|2_i€ Im[k°] <0 2
kO = —p8+\/|E+ﬁ2|2—i€ Im[k°] <0 3

Im(k}] \

1
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Then using residue theorem

- N N N
= [ &’k
/ [Resl [D1D2D3] + Ress [D1D2D3] + Ress [D1D2D3”

Residues can be represented as cuts:

Energy flow

N
- /d4k D1DyDs (D16 (Dy) + D26 (D3) + D36 (Ds))

Delete the cut edges, obtain spanning trees » Tree processes S;ﬁ?;!;‘fa'

One loop is easy! The technicalities start to appear at higher loops

Zeno Capatti, ETH Ziirich Local Unitarity and Infrared Safety

12



X

For example, applying LTD to a double triangle
e+
SRS
; N

Interplay of momentum conservation and epsilon prescription is key to obtain the
energy flow

_|_

N4 \7
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Going back to the triangle

+
= + r >—+
B - B s
Finally, we can apply LTD for our original purpose
d*p’ d3p d3k
o574 k8(P1 + 17— 71— Qo) — (1] + 7 — @ —

ERS S

Applying LTD to the interference diagrams, we can bring them under the same integral sign

08 D [
%‘ = /dgkdgﬁ (6(E1 + F2 — Qo) fvirt + 0(E1 4+ Es + Es — Qo) freal)
by —<‘$'>—

Er
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Causal flow

The measure now differs only in the delta enforcing on shell energy conservation

(- ~6(E1 + B2 - Qo)
<P

~ )(E1 + Es+ E5 — Qo)

Find a variable to solve both deltas. Here the first energy works, in general there is not a
unigue energy that allows that.

Side-step phase space mapping problems

Solution: introduce a fictitious variable in which to solve the delta

0(|k] — Qo) —. o(t|k| — Qo) — t= —
k— tk 14

Soper, Soper, ZC, Hirschi, Pelloni, Ruiji General FSR cancellations

arXiv: 9804454 (1998) arXiv: 0102031 (2001 @ RADCOR)  arXiv: 2010.01068 (2020)  For N to M NKLO processes

A toy example:

/ BES(F — Qo)f(F)
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Zeno Capatti, ETH Ziirich Local Unitarity and Infrared Safety



dSE/d h(t) (|k\ Qo) f (E) using 1 :/dth(t)

4°F 20 h(Qo/IR]) F(QoF/IFI) with t* = Qo/|k|

/
:/d3l_5/dtt3 B(t) S(HIR| — Qo) f(th)  using stk
/

Solve delta in scaling variable. Phase space has same dimensionality

Then
{[> = / dPkd®56 (B + B2 — Qo) fuirs = / d°kd’p g ()
o Qo
tr =tX(k — - T =
where £, = ty(k, p) B, + Es B.F) = ¢t B,F) (8,6 =Roo
Why “causal flow”? Q;(O, lg? l_j) — (IZ7 f

Apply same procedure to real...
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Then: {Eﬁ = / d*pd®k(gy () + g: (7))

We have aligned the measure!

N

It turns out that doing so also achieves IR-finiteness at the local level (causal flow)

* \We constructed our local representation of differential cross-sections

* The two main ingredients (LTD and the causal flow) can be generically applied
at any order.

Showing IR finiteness we have to recast this expression is a slightly different
but illuminating way

18
Zeno Capatti, ETH Ziirich Local Unitarity and Infrared Safety



Local Unitarity representation
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The LTD representation of the double triangle with rescaled momenta is

tQ1 tQQ

tgs ltd = — _®_+_®_+_<]>_+_<]>_
“ b)) PP <Pt <P-1 g s,

tq; +

tqa tqs

Then

;El*% :/d3ﬁd3k[ hnta*(t—t )fltd(q>‘)‘tqz + R )fltd(<[>)|tqj

Jv, (Jr can be written as different limits of the same function!

Solving delta in the scaling variable =—> 1d residue theorem along the line 7y (t) = (tk,tp)

p— O‘d
- 4 1
%: g: _ / d3ﬁ d3 E tllf% (t — ) fltd (—@—) represLel:\tation

tq;

L 1=1

Cutkosky, but at the local level!
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Local IR cancellations: 5-loop example

We proved cancellations rigorously for FSR singularities. Here we use an example

Im - &+ B+ K+ L+ B+
x++ G+ +

Compute analytically > —|— _|_

with FORCER + R*

+ -

B. Ruijl, T. Ueda, J. Vermaseren
arXiv: 1704.06650 (2017)

F. Herzog, B. Ruijl 5 19
arXiv: 1703.03776 (2017) _ H 137, lim (¢ — £;) fiea ( @)
J t—t; ¢ Monte Carlo
L 1=1 4 =1 \_ Integration
b S
N, [10°] ‘ o lus] N, FORCER [GeV?] aLoor [GeV?] exp. A [o] A [%]
min avg
Inclusive cross-section per supergraph
1 1100 49000 128 1.66419 1.6691(79) -9 0.62 0.0029
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We did the same for all 3-4-5 loop two-point functions that are finite in scalar theory

Zeno Capatti, ETH Ziirich
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Inclusive ete”™ — ttH @ NLO

Same procedure is applied to physical case.

This has many forward-scattering diagrams and Cutkosky cuts, e.g.

14
15

name
SG_QGO
SG_QG2
SG_QG6

SG_QG46
SG_QG47

multiplicity
2.000000e+00
2.000000e+00
1.000000e+00

2.000000e+00
2.000000e+00

Pure NLO correction:

MG res:
aL real res:
| (MG-aL)/MG |

Zeno Capatti, ETH Ziirich

neval real real_err eval_time
5850000 6.689035e-05 9.240544e-08 © days 00:15:35.553646000 . .
2080000 2.349607e-05 4.541978e-08 O days 00:00:41.443805000 15 forward-scattering diagrams

2080000 -8.346356e-05 9.293410e-08 @ days 00:00:53.087342000

2080000 3.534058e-05 3.903003e-08 0 days 00:00:59.076110000 O(50) interference diagrams
2080000 -1.6186726-06 1.686635¢-09 0 days 00:00:09.248204000

Only dim. reg.

-1.38400e-04 +/- 1.4e-07 Matches benchmark for UV counter-terms
-1.38320e-04 +/- 5.9e-07
S e oa From MG5_aMC@NLO

No IR counter-terms

Alwall, Frederix, Frixione, Hirschi, Maltoni
arXiv: 1405.0301 (2014)
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o - - dD
AP
-

Very complicated singular structure, regulated without counter-terms!

| SG_QG3 | -0.000685226 +- 1.86e-06 (0.27%) | chi2=0.875Imwi=1.041n=19057.0M(11%) |n@=73.4M(0.39%) |p=11%

Same with

LU w<§i>Wf LU WC?%?WA LU|
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Initial State Singularities
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Initial State Singularities

Scattering of hadrons is treated in the
parton model

Assumptions:

* |nteractions between partons inside the
same hadron are negligible

e Scattering occurs between one Parton
from one hadron and one Parton from
the other

These assumptions lead to singularities that are incurable from KLN
k=uxp

The current paradigm uses PDF renormalisation + resummation to eliminate them

26

Zeno Capatti, ETH Ziirich Local Unitarity and Infrared Safety



Idea
Instead of using the Parton model, we take inspiration from KLN

For ete™ — 25 @ NLO we used

(include all degenerate configurations, higher final-state multiplicities)
Flip it, and obtain the answer for Drell-Yan, 2] — e e

PO Piepid

parton model

The initial state singularity is now absent!
Include degenerate initial states —  Higher multiplicity initial states

What about Also has collinear
this diagram? Pk 1 singularity at k = xp

_4_

A

27
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In this case, the cancelling partner is

<
i~
5
>
_F

Higher multiplicity initial states, but also disconnected! Free travelling gluon!

The sum of these two diagrams is finite everywhere in phase space

Not a new ideal

55,0 :_';::

f2 f3

Fic. 15. Additional double cut diagrams which are introduced
to take account of the degeneracy of the initial state.

T. Kinoshita

“Mass singularities of
Feynman amplitudes”
(1962)

The methods described here cannot be dife?tly applied to
processes with definite numbers of hadrons in the initial state.
However, it may be that for some purposes a high energy hadron
behaves like a jet. In this case, the differential cross sec-
tion for jet production in high energy hadronic collisions

could also be calculated in QCD by ordinary perturbation theory.

G. Sterman, S. Weinberg,
Jets from Quantum Chromodynamics T.D. Lee, M. Nauenberg
(1977) «
Degenerate systems and
mass singularities”
(1963)

(iii) (iv)

Frye, Hannesdottir, Paul, Schwartz, Yan
Also look at arXiv:1810.10022 (2019)

Zeno Capatti, ETH Ziirich
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Multiple initial state partons

This argument suggests that, in order to maintain IR-finiteness, one requires more than
two initial state partons

and that the multiple partons should be clustered into two jet-like objects that resemble
high energy hadrons

%‘ CI1+CI2=

0 <A —
/

q1

After clustering, we get two jets with momenta
] ]
P 1 P 2
Cluster initial states analogously to final states: symmetry initial-final state

29
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The use of a jet algorithm naturally comes with two scales

* One measuring the allowed phase space for the total momentum of the jet

(P <dy

If the scale is zero, the jet lies exactly on the z axis

f d; =0 thetwo jets are exactly back-to-back. This is equivalent to the
parton’s model

P1 — (371\/570707371\/5)7 P2 = (552\/5,0,0, _372\/5)

« One measuring the maximum angular separation between two partons in a jet

(Fig)L <A — }.,°

The smaller this scale, the more collinear the partons are

The more collinear the partons, the more divergent the observable

A, is the equivalent of the factorisation scale! ~ log (AC)

30
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But how do we compute all this?

R preepig

Up to redefinition of observables, this is equivalent to

So we can use Local Unitarity!
PP I PIC = fons

Where the integrand is locally finite! \We can Monte Carlo integrate it.

31
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What can we do?

e Takethelimit d; — 0 analytically and obtain exact back to back jets

P) = ((P})°,0,0, (P

1

This allows us to define Bjorken variables

v — (P)° + (P))? vy — (P)° — (Py)?

2 2

For a 2 to N diagram this reproduces the parton model

* Bin the distribution in the Bjorken variables — Fit PDFs!
(not in MS bar)

e Vary the factorisation scale A, and interpolate the dependence on the
factorisation scale

Banfi, Salam, Zanderighi,

Numerical resummation arXiv:0407286 (2004)
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Hadronic cross-sections

We started with a very generic formalism for scattering

d™o

O(HH%X+HJ)Z/{ dSﬁi}f(pl,...,pm) I

/ :
Sum over number of T \

initial state partons Weiaht Cross-sections for m initial
9 state partons

P1y---sPm — X =+ nJ)

Integration over initial
state partons momenta

In the end, we arrive to

2
dap

dxldxg

o(HH %X+nj)_/dx1da:2 fz1,Ac) fxa, Ao) (2] > X +nj,A)

In a sense, we get the renormalised result to begin with!
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Let us look specifically at:

Phenomenology

A

We integrate the “usual” diagram and check that it matches with traditional computations

And bin the transverse momentum distribution of the gluon (jet)

do

dp

loglo (

Singularity at zero
transverse momentum

k'J_ — 0
Since

pr =20
This implies

k=xp

Zeno Capatti, ETH Ziirich

[pb]>3o

1.5+
1.0+

® LU
® MadGraph

kL [GeV]
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30 kJ_—

Now include the other graph

000000 FQ
25+ ..‘...........‘CCLCF
®e

k : o (\b(\CLCCCC(p
: 60000,
i [ ] X
A 20~ Y

N .
« I ° o AC — O ("'MG)
D B
-, o \. = 20GeV
Distribution is finite for any k| «
: A. = 50 GeV
We have to choose A, °
20 GeV 50 GeV ki [GeV]

First observation: for A. > 50 GeV the distribution does not change anymore

(p T k)J_a pPL <mgz k'J_ <Mz dueto energy/momentum conservation

Highest separation of two partons in a jet is of order of Z mass

Factorisation scale has natural range choice associated to process scale
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Scale dependence

Consider now the integral

100
do

I(A.) = dk| — (A,

(Ac) /O Ldlﬂ( )

as a function of the factorisation scale

I(A)

40t

® LU

® 45.5295 — 3.96580 log[A.] — 0.175760 log[A,]?

34|

32

30+

L L L L L L L L L L L L L L L L L L L L L
5 10 15 20 25

Ac ‘ eV]
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Local Unitarity is a fully local and generic paradigm

e IR singularities regulated by realising KLN locally
 Thresholds regulated using local deformation

e Local UV and renormalisation fully automated

It forces to unify different aspects of fixed-order computations

e Phase-space/Loop integrals

e Initial State Singularities/Final State Singularities

It is particularly suitable to numerical integration!

e Take advantage of the robustness of MonteCarlo methods
e Full automation underway

e Evaluation speed and convergence constitute important challenges

Futu_re _ ete” — ttH NZ?LO cross-section
application:
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