ATLAS search for EWK SUSY in a three lepton final state

RAMP #6 Seminar: Auxiliary Material Presentation

25th October 2021

Marco Aparo (University of Sussex, UK), on behalf of the ATLAS Collaboration

Introduction

- ATLAS search for chargino-neutralino pair production with WZ/Wh boson-mediated decays to three-lepton final state in √s = 13 TeV pp collision data
 - Paper recently accepted to EPJC
 - Useful links: <u>Twiki</u>, <u>arXiv</u>, <u>InspireHEP</u>, <u>HEPData</u>
- Outline:
 - Analysis target and strategy
 - Results overview
 - Recursive Jigsaw Reconstruction (RJR) Run 2 follow-up
 - Available HEPData material

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

3 Jun 202

arXiv:2106.01676v1

C CERN-EP-2021-059
4th June 2021

Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

A search for chargino–neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s}=13$ TeV pp collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb⁻¹. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde{\chi}_1^+$) and neutralinos ($\tilde{\chi}_2^0$) are considered. For pure higgsino $\tilde{\chi}_1^+\tilde{\chi}_2^0$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde{\chi}_2^0$ masses up to 210 GeV. Limits are also set for pure wino $\tilde{\chi}_1^+\tilde{\chi}_2^0$ pair production, on $\tilde{\chi}_2^0$ masses up to 640 GeV for decays via on-shell W and Z bosons, up to 300 GeV for decays via off-shell W and Z bosons, and up to 190 GeV for decays via W and Standard Model Higgs bosons.

© 2021 CERN for the benefit of the ATLAS Collaboration

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license

Targeted signal models: Wino-Bino(+) scenario

Simplified models assumptions:

- MSSM
- EWK direct production of Chargino-Neutralino
- Wino-Bino scenario: $|M_1| < |M_2| \ll |\mu|$
- $m_{\mathrm{eig}}(\widetilde{\chi}_2^0) imes m_{\mathrm{eig}}(\widetilde{\chi}_1^0) > 0 o$ Wino-Bino(+)

- $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Wino-like and mass-degenrate
- **R-parity conserving** decay to **Bino-like**, stable LSP = $\widetilde{\chi}_1^0$
- SM gauge- and SM Higgs-mediated decays (100% B.R.)
- Final state: three leptons (e or μ) + E_T^{miss} + light jets

Models Reinterpretations & Combination

- Wino-Bino(+) Off-shell WZ model → reinterpreted in the context of :
 - → Wino-Bino(-) scenario:
 - Same simplified model assumptions except for: $m_{ ext{eig}}(\widetilde{\chi}^0_2) imes m_{ ext{eig}}(\widetilde{\chi}^0_1) < 0$
 - Different mass lineshape of Z boson from $\widetilde{\chi}_2^0$ decay \rightarrow mainly for $\Delta m < m_z$ (off-shell)
 - Wino-Bino(+) signal samples reweighted based on m_{7*}
 - → Higgsino scenario:
 - $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{0}$, $\tilde{\chi}_1^{0}$ \rightarrow purely **higgsino** states

•
$$m(\widetilde{\chi}_1^{\pm}) = \frac{m(\widetilde{\chi}_2^0) + m(\widetilde{\chi}_1^0)}{2}$$

- Results in the WZ-mediated scenario(s):
 - Statistically combined together and with a previous ATLAS search (Phys. Rev. D 101 (2020) 052005) in two-lepton final state:
 - "Compressed"
 - Model interpretations considered: Wino-Bino(+/-) and Higgsino scenarios

Analysis strategy: On-shell WZ and Wh

- Trigger strategy: **di-lepton** \rightarrow $p_T^{\ell_1},\,p_T^{\ell_3},\,p_T^{\ell_3}\geq 25,\,20,\,10\,\mathrm{GeV}$ \rightarrow trigger efficiency plateau
- Event selection based on the presence of a Same-Flavour Opposite-Sign (SFOS) lepton pair + one extra lepton

- If $\left|m_{\ell\ell}^{
 m SFOS} m_Z
 ight| < 15\,{
 m GeV}$
 - → Target = **On-shell WZ**

- If $\left|m_{\ell\ell}^{
 m SFOS} m_Z
 ight| \geq 15\,{
 m GeV}$
 - → Target = **On-shell Wh**
- Binned Signal Regions (SRs) approach (see back-up):
 - Enhance sensitivity for different $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)$ scenarios
 - Better control over main SM backgrounds (e.g. WZ→3I)
 - Exploit topologies with jets from Initial State Radiation

- $n_{sros} = 0$ ℓ^{\pm} h ℓ^{\pm} DFOS pair
- Different-Flavour Opposite Sign (DFOS) lepton pair from SM Higgs decay
- Background suppression with requirements on:
 - Angular separation b/w DFOS leptons
 - High E_T^{miss} significance (due to $\widetilde{\chi}_1^0$)
 - Binning in light jet multiplicity
- $E_T^{miss} > 50\,{
 m GeV}$ (suppression of Z+jets background) and **b-tagged jet veto** (suppression of top-related backgrounds)

Analysis strategy: Off-shell WZ

- Trigger strategy: multi-lepton and E_T^{miss} triggers ightarrow different $p_T^\ell, /\, E_T^{miss}$ thresholds ightarrow trigger efficiency plateau
- n_{sFos} ≥1 SFOS lepton pair
 - If ${\rm n_{SFOS}}{>}1
 ightarrow {\rm consider}$ the SFOS pair with lowest invariant mass ($m_{\ell\ell}^{\rm min}$)
- Event selection based on $m_{\ell\ell}^{\min}$ to maximally suppress combinatorial background from on-shell Z boson:

$$1\,{
m GeV} \leq m_{\ell\ell}^{
m min} \leq m_{\ell\ell}^{
m max} < 75\,{
m GeV}$$

- **SRs binned** in $m_{\ell\ell}^{\min}$ (see *back-up*):
 - ightarrow to target different $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)$ scenarios
 - \rightarrow veto on J/Ψ and Υ resonances

- Four different categories for SRs based on:
 - \rightarrow Jet multiplicity (=0 and ≥ 1)
 - ightarrow Low and High E_T^{miss}
- SRs further optimised individually by means of other kinematics constraints
- Dedicated multi-variate, Boosted Decision Tree (BDT)-based isolation requirement on the softest lepton
 - → suppression of backgrounds from SM Z+jets in which softest lepton likelier to be "fake/non-prompt"
- b-tagged jet veto

Standard Model backgrounds

- SM WZ→31 (mainly in SFOS SRs) → MC normalised to data in a Control Region (CR)
- SM Higgs and Triboson processes (mainly in DFOS SRs)
- Reducible backgrounds with "fake/non-prompt" leptons from SM Z+jets (estimated from data) and tt
- Final background estimate from *profile log-likelihood fit*, simultaneous in all (orthogonal) CRs and SRs

Results

On-shell Wh

ojb | ojc | ojd | ojd | oje | oje | ojf1 | ojf2 | ojg2 | ojg2 | ojg2

SR^{offWZ}

njf1 jf2 jg1

Model-independent limits & Discovery p-values

Off-shell WZ

On-shell WZ

SR	Nobs	$N_{\rm exp}$	$\sigma_{\mathrm{vis}}^{95}$ [fb]	$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	CL_b	p(s=0)(Z)
incSR ^{WZ} -1	34	38 ± 5	0.10	14	16^{+7}_{-4}	0.32	0.50 (0.00)
incSR ^{WZ} -2	2	1.2 ± 0.5	0.04	5.0	$4.0^{+1.6}_{-0.7}$	0.76	0.23 (0.73)
incSR ^{WZ} -3	4	6.5 ± 1.1	0.03	4.8	$6.5^{+2.6}_{-1.8}$	0.19	0.50 (0.00)
incSR ^{WZ} -4	25	31 ± 6	0.09	12	15^{+6}_{-4}	0.25	0.50 (0.00)
incSR ^{WZ} -5	1	5.2 ± 1.1	0.03	3.9	$5.8^{+2.2}_{-1.4}$	0.03	0.50 (0.00)
incSR ^{WZ} -6	23	16.4 ± 1.4	0.12	17.0	$10.3^{+3.9}_{-3.0}$	0.93	0.07 (1.48)
$incSR_{SFOS}^{Wh}$ -7	174	150 ± 14	0.41	58	38^{+15}_{-11}	0.90	0.10 (1.27)
$incSR_{SFOS}^{Wh}$ -8	53	55 ± 5	0.12	17	18^{+7}_{-5}	0.42	0.50 (0.00)
$incSR_{SFOS}^{Wh}$ -9	34	36 ± 4	0.10	14	15^{+6}_{-4}	0.40	0.50 (0.00)
$incSR_{SFOS}^{Wh}-10$	56	55 ± 7	0.16	22	21^{+8}_{-6}	0.55	0.41 (0.22)
${\sf incSR}_{\sf SFOS}^{\sf Wh}$ – 11	41	45 ± 6	0.11	16	18^{+7}_{-5}	0.34	0.50 (0.00)
incSR _{DFOS} -12	18	11.5 ± 4.1	0.12	17.0	$10.5^{+4.2}_{-2.7}$	0.92	0.07 (1.48)

	•						
SR	$N_{ m obs}$	$N_{\rm exp}$	$\sigma_{ m vis}^{95} [m fb]$	$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	CL_b	p(s=0) (Z)
incSR _{highE} -nja	3	6.0 ± 1.6	0.03	4.6	$6.3^{+2.4}_{-2.0}$	0.16	0.50 (0.00)
$incSR^{offWZ}_{highE_{r}}$ -njb	2	1.4 ± 0.6	0.03	4.8	$4.0^{+1.6}_{-0.7}$	0.71	0.30 (0.53)
${\sf incSR}^{\sf offWZ}_{\sf high ot\!\!E_{\scriptscriptstyle T}}$ -njc1	7	9.5 ± 2.2	0.05	7.0	$8.4^{+2.9}_{-2.2}$	0.28	0.50 (0.00)
${ t incSR_{highE_{ au}}^{ t offWZ}}$ -njc2	2	2.1 ± 0.8	0.03	4.7	$4.6^{+1.8}_{-1.1}$	0.52	0.50 (0.00)
incSR ^{offWZ} -b	31	36 ± 4	0.09	12	15^{+6}_{-4}	0.25	0.50 (0.00)
$incSR^{offWZ}_{highE_{\scriptscriptstyle{T}}}-b$	3	3.0 ± 0.9	0.04	5.4	$5.2^{+2.0}_{-1.3}$	0.53	0.50 (0.00)
incSR _{lowE} ,-c	86	88 ± 7	0.17	23	24^{+9}_{-7}	0.44	0.50 (0.00)
incSR ^{offWZ} highĔ,-c	9	9.3 ± 1.5	0.06	7.7	$7.7^{+3.4}_{-1.8}$	0.50	0.50 (0.00)
${\sf incSR}^{{\sf offWZ}}{\sf -d}$	202	184 ± 12	0.37	51	37^{+14}_{-11}	0.84	0.16 (0.99)
${\sf incSR}^{{\sf offWZ}}{\sf -e1}$	332	308 ± 17	0.49	68	49^{+19}_{-15}	0.84	0.16 (1.00)
${\sf incSR}^{{\sf offWZ}}{\sf -e2}$	298	269 ± 15	0.50	69	46^{+17}_{-14}	0.90	0.10 (1.29)
${\tt incSR}^{{\tt offWZ}}{\tt -f1}$	479	457 ± 22	0.56	78	63^{+22}_{-20}	0.77	0.23 (0.75)
${\tt incSR}^{{\tt offWZ}}{\tt -f2}$	277	272 ± 13	0.33	46	42^{+17}_{-12}	0.60	0.37 (0.34)
${\sf incSR}^{{\sf offWZ}}$ -g1	620	593 ± 28	0.69	96	74^{+29}_{-22}	0.77	0.21 (0.79)
${\sf incSR}^{{\sf offWZ}}$ -g2	418	408 ± 20	0.46	64	57^{+23}_{-15}	0.65	0.32 (0.47)
${\sf incSR}^{{\sf offWZ}}$ –g3	288	285 ± 16	0.35	48	47^{+19}_{-12}	0.55	0.38 (0.30)
incSR ^{offWZ} -g4	141	136 ± 10	0.25	35	31^{+13}_{-8}	0.64	0.35 (0.39)

- **Discovery fits**, with pseudo-data, performed on **inclusive SRs** (see *back-up*):
 - Logical OR between nominal SRs (even overlapping) → capture various (signal) kinematics → based on best expected discovery sensitivity
- 95% CL upper-limits on: **observed** and **expected number** of BSM events, **visible cross section** of a BSM process
- p-value and significance (Z) on background-only hypothesis

Model-dependent limits: Wino-Bino(+) scenario

- 95% Confidence Level (CL) upper-limits on $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$ using the CL_s prescription
 - For WZ-mediated models: $m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0)$ excluded up to 640 GeV for $m(\widetilde{\chi}_1^0)=0$, and up to 300 GeV for low $\Delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\,\widetilde{\chi}_1^0)$
 - For Wh-mediated model: $m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0)$ excluded up to 185 GeV for $m(\widetilde{\chi}_1^0)$ < 20 GeV

Model-dependent limits: Wino-Bino(-) & Higgsino

Lab State
Decay States
Visible States

Invisible States

Standard approach

RJR follow-up with full Run 2 data

- Follow-up on 2015-2016 analysis (link) with full Run 2 data (139 fb⁻¹)
 - An excess was observed with 36.1 fb⁻¹ data
- RIR technique: define decay trees (intermediate states matching signal hypothesis)
 - Kinematic variables built from a set of different reference frames
- SRs targeting Standard (0 jets → SR3I-Low) and ISR (≥ 1 jets → SR3I-ISR) approach
- No significant deviation from SM observed with full Run 2 data

(LAB) $(\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0)$	(LAB) (CM)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ISR V	S I

ISR approach

Region	SR3ℓ-Low	SR3ℓ-ISR
Observed	53	25
Fitted SM	49 ± 14	17 ± 4
Diboson	47 ± 14	16 ± 4
FNP leptons	1.36 ± 0.29	0.83 ± 0.27
Triboson	0.40 ± 0.14	0.14 ± 0.06
Others	0.052 ± 0.029	0.41 ± 0.21

SRs yields

Model independent/discovery fit results

SR	$\sigma_{ m vis}^{95}$ [fb]	$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	CL_b	p(s=0) (Z)
SR3ℓ-Low	0.24	33	30^{+10}_{-8}	0.61	0.39 (0.28)
$SR3\ell$ -ISR	0.14	19	12^{+5}_{-4}	0.89	0.09 (1.32)

HEPData material

All information from each plot/table in HEPData is available and retrievable In various format (ROOT TGraph, CSV)

- Resources → Common Resources buttons:
 - SimpleAnalysis code snippets for on-/off-shell
 - SLHA files for signals used in cutflows
 - Full likelihoods in HistFactory JSON format:
 - Can be used in <u>PyHF</u>
 - Background info & patchsets for signal models, including combination with compressed analysis (see back-up)
 - README for instructions
- Tables and figures for SRs/CRs/VRs yields
- Exclusion limits curves
- Observed/Expected upper limits on cross section for every signal point
- Discovery fits tables (see slide 11)
- Kinematic distributions plots (e.g. see slide 7)
- Detailed cutflow tables
- Acceptance & Efficiency maps

Upper limits on signal cross section

 Expected and Observed Upper Limits on signal cross sections for every signal point and for all reinterpretations, including combination with compressed analysis

Yields tables

- Detailed yields tables showing observed data and fitted SM background events for:
 - All SRs/CRs/VRs for every model: Off-shell WZ, On-shell WZ, On-shell Wh
 - Breakdown of main SM background processes

0	shall WZ CDs	

Regions	SR ^{WZ} -1	SR ^{WZ} -2	SR ^{WZ} -3	SR ^{WZ} -4	SR ^{WZ} -5	SR ^{WZ} -6	SR ^{WZ} -7
Observed	331	31	3	2	42	7	3
Fitted SM	314 ± 33	35 ± 6	4.1 ± 1.0	1.2 ± 0.5	58 ± 5	8.0 ± 0.9	5.8 ± 1.0
WZ	294 ± 31	32 ± 5	3.7 ± 0.9	0.9 ± 0.5	48 ± 4	7.1 ± 0.8	5.0 ± 0.9
ZZ	12.1 ± 3.1	0.66 ± 0.35	0.08 ± 0.04	0.04 ± 0.02	2.3 ± 0.6	0.12 ± 0.04	0.08 ± 0.03
$t\bar{t}$	2.8 ± 0.8	0.36 ± 0.26	0.04 ± 0.01	$0.00\pm_{0.00}^{0.01}$	1.4 ± 0.4	$0.00\pm_{0.00}^{0.01}$	0.04 ± 0.02
Z+jets	0.01 ± 0.01	0.14 ± 0.14	0.05 ± 0.06	0.06 ± 0.04	2.8 ± 2.3	0.3 ± 0.4	0.26 ± 0.17
$t\bar{t}+X$	0.16 ± 0.06	0.13 ± 0.05	0.03 ± 0.04	0.01 ± 0.01	0.10 ± 0.06	0.05 ± 0.03	0.01 ± 0.01
Others	5.1 ± 0.8	1.1 ± 0.4	0.21 ± 0.06	0.17 ± 0.06	3.2 ± 0.5	0.38 ± 0.11	0.34 ± 0.10
Regions	SR ^{WZ} -8	SR ^{WZ} -9	SR ^{WZ} -10	SR ^{WZ} -11	SR ^{WZ} -12	SR ^{WZ} -13	SR ^{WZ} -14
Observed	1	77	11	0	0	111	19
Fitted SM	0.8 ± 0.4	90 ± 20	13.4 ± 2.4	0.5 ± 0.4	0.49 ± 0.24	89 ± 11	16.0 ± 1.4
WZ	0.44 ± 0.32	77 ± 19	11.3 ± 2.4	0.37 ± 0.31	0.38 ± 0.22	72 ± 9	13.4 ± 1.3
ZZ	0.01 ± 0.01	1.9 ± 0.9	0.24 ± 0.13	0.01 ± 0.01	0.01 ± 0.01	5.8 ± 2.8	0.39 ± 0.18
$t\bar{t}$	$0.00\pm_{0.00}^{0.01}$	3.3 ± 0.9	0.45 ± 0.28	$0.00\pm_{0.00}^{0.01}$	$0.00\pm_{0.00}^{0.01}$	6.0 ± 1.4	0.24 ± 0.17
Z+jets	0.28 ± 0.20	4 ± 5	0.2 ± 0.4	0.02 ± 0.03	0.02 ± 0.03	0.02 ± 0.03	0.02 ± 0.03
$t\bar{t}+X$	0 ± 0	1.3 ± 0.4	0.40 ± 0.14	0.05 ± 0.04	0.02 ± 0.01	1.6 ± 0.5	0.56 ± 0.16
Others	0.08 ± 0.06	2.3 ± 0.5	0.79 ± 0.22	0.08 ± 0.05	0.08 ± 0.03	3.5 ± 0.7	1.37 ± 0.33
Regions	SR ^{WZ} -15	SR ^{WZ} -16	SR ^{WZ} -17	SR ^{WZ} -18	SR ^{WZ} -19	SR ^{WZ} -20	
Observed	5	1	13	9	3	1	
Fitted SM	2.8 ± 0.6	1.30 ± 0.27	13.7 ± 2.6	9.2 ± 1.3	2.3 ± 0.4	1.09 ± 0.13	
WZ	2.3 ± 0.6	1.07 ± 0.24	10.2 ± 1.9	6.7 ± 0.8	1.58 ± 0.24	0.87 ± 0.12	
ZZ	0.07 ± 0.04	0.04 ± 0.03	0.13 ± 0.06	0.10 ± 0.04	0.02 ± 0.01	0.02 ± 0.01	
$t\bar{t}$	$0.00\pm_{0.00}^{0.01}$	$0.00\pm_{0.00}^{0.01}$	0.77 ± 0.32	0.45 ± 0.26	$0.00\pm_{0.00}^{0.01}$	$0.00\pm_{0.00}^{0.01}$	
Z+jets	0.02 ± 0.02	0.07 ± 0.08	1 ± 1	0.7 ± 1.0	0.25 ± 0.34	0.02 ± 0.02	
$t\bar{t}+X$	0.07 ± 0.03	$0.00\pm_{0.00}^{0.03}$	0.53 ± 0.17	0.33 ± 0.10	0.07 ± 0.04	0.03 ± 0.02	
Others	0.37 ± 0.11	0.12 ± 0.04	1.1 ± 0.8	0.9 ± 0.7	0.27 ± 0.07	0.18 ± 0.05	

Cutflow tables

0111-14/7						
On-shell WZ	$m(\tilde{\chi}_2^0, \tilde{\chi})$	0 1) [GeV]				
Selection	(300, 200)	(600, 100)				
$\mathcal{L} \times \sigma$	53784	2799				
$\mathcal{L} \times \sigma \times BF$	1760	92				
$\mathcal{L} \times \sigma \times BF \times filt.$ eff.	1322	69				
3 isolated lepton selection,	1022	0,				
lepton $p_{\rm T}^{1,2,3} > 25,20,10$ GeV, $E_{\rm T}^{\rm miss} > 50$ GeV	227	23.9				
$n_{SFOS} \ge 1$	226	23.7				
Trigger selection	222	23.3				
$n_{\text{b-jets}} = 0$	209	21.9				
Resonance veto $m_{\ell\ell} > 12 \text{ GeV}$	209	21.9				
$ m_{3\ell} - m_Z > 15 \text{ GeV}$	203	21.7				
$m_{\ell\ell} = m_Z > 15 \text{ GeV}$ $m_{\ell\ell} \in [75, 105] \text{ GeV}$	196	20.1				
with MC to data weight	186	19.2				
		7.72				
$n_{\text{jets}} = 0$	76.4					
with MC to data weight	73.3	7.45				
$m_{\rm T} \in [100, 160] \text{ GeV}$	26.7	0.90				
SR ^{WZ} -1	20.9	0.09				
SR ^{WZ} -2	4.86	0.11				
SR ^{WZ} -3	0.78	0.16				
SR ^{WZ} -4	0.14	0.54				
$m_{\rm T} > 160~{\rm GeV}$	5.80	5.11				
SR ^{WZ} -5	4.64	0.37				
SR ^{WZ} -6	0.16	0.49				
SR ^{WZ} -7	0	2.21				
SR ^{WZ} -8	0	2.14				
SR _{0j} (SR ^{WZ} -1 to 8)	31.4	6.11				
$n_{\text{jets}} > 0, H_{\text{T}} < 200 \text{ GeV}$	97.5	9.90				
with MC to data weight	91.8	9.54				
$m_{\rm T} \in [100, 160] {\rm GeV}$	29.6	1.19				
SR ^{WZ} −9	8.75	0.17				
SRWZ-10	3.46	0.32				
SRWZ-11	0.54	0.15				
SRWZ-12	0	0.38				
$m_{\rm T} > 160 {\rm GeV}$	9.50	6.80				
SRWZ-13	7.19	0.49				
SR ^{WZ} -14	1.53	1.37				
SR ^{WZ} -15	0.09	2.77				
SR ^{WZ} -16	0	1.69				
$n_{\text{jets}} > 0, H_{\text{T}} > 200 \text{ GeV}$	22.2	2.40				
$H_{\rm T}^{\rm lep} < 350 {\rm GeV}$	20.9	0.65				
with MC to data weight	19.3	0.58				
$m_{\rm T} > 100 \text{ GeV}$	10.8	0.47				
SR ^{WZ} -17	2.53	0.02				
SR ^{WZ} -18	3.12	0.11				
SR ^{WZ} -19	1.09	0.12				
SR ^{WZ} -20	1.13	0.13				
SR_{nj}^{WZ} (SR ^{WZ} -9 to 20)	29.4	7.8				
nj (511 5 to 25)	27.7	7.0				

$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow WZ\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ wino/bino (+)									m(j	${}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (12$	25, 85) GeV								
	a		b		(:	d		e			fl		f2		g1		2	a through
Common cuts																			
$\mathcal{L} \times \sigma$										1394866									1394866
$\mathcal{L} \times \sigma \times BF$		₩/i	no-l	Rin	0(+)				45634									45634
$\mathcal{L} \times \sigma \times BF \times filt.$ eff.			110 L	,,,,		/				16811									16811
3 isolated lepton selection			E ah	11	WZ	,				2.66e+0	03								2.66e
b-veto		U	1-5n	le II	VVZ					2.55e+0	03								2.55e
Trigger selection										1.81e+0	03								1.81e
$m_{\ell\ell}, m_{\ell\ell}^{\max}$ [GeV]									[< 75]	1.79e+0	03								1.79e
Common cuts SR ^{offWZ}																			
$m_{\ell\ell}^{\min}$ [GeV]						[∈ [12, 40]]	1.70e+03							[∈ [40, 75]]	14.6				1.71e
lepton $p_{\mathrm{T}}^{1,2,3}$ [GeV]						[> 10]	1.44e+03							[> 15]	7.74				1.45e
FNP lepton cleaning (conversions)							1.12e+03								5.92				1.12e
mmax [GeV]						[< 60]	1.02e+03								5.92				1.03e
min [GeV]			[∈ [12, 15]]	47.0	[∈ [15, 20]]	119	[∈ [20, 30]]	406	[∈ [30,40]]	452		[∈ [40, 60]	5.92	1		[∈ [60,75]] 0		1.03e
m _{T2} ¹⁰⁰ [GeV]			[< 115]	19.4	[< 120]	74.7	[< 130]	374	L- (L-1)	452		1-1-99	5.92			1-1	0		926
$\min \Delta R$			[< 1.6]	19.4	[< 1.6]	73.2	[< 1.6]	295		452			5.92				0		846
Cuts SR ^{offWZ} _{lowE_T} -0j			[· IIoj	1211	[· rioj	7510	[* 110]	270		10.0			0178						
n _{jets} n _{ex}					1				1										1
n _{jets}			[= 0]	12.2	[= 0]	49.5	[= 0]	186	[= 0]	291		[= 0]	3.28			[= 0]	0		542
E _T ^{miss} [GeV]			[< 50]	11.2	[< 50]	42.9	[< 50]	147	[< 50]	242		[< 50]	2.62			[< 50]	0		446
$E_{\mathrm{T}}^{\mathrm{miss}}$ signif.			[> 1.5]	8.57	[> 1.5]	34.7	[> 1.5]	123	[> 1.5]	182		[> 1.5]	1.91			[> 1.5]	0		350
$m_{3\ell}$ [GeV]				8.57		34.7		123		182		[> 100]	0.656			[> 100]	0		349
mminmll [GeV]			[< 50]	8.16	[< 50]	32.6	[< 50]	97.8	[< 60]	158	[< 60]	0.560	[> 90]	0	[< 60]	0	[> 90]	0	297
$p_{\mathrm{T}}^{\mathrm{lop}}/E_{\mathrm{T}}^{\mathrm{miss}}$			[< 1.1]	5.27	[< 1.1]	22.7	[< 1.1]	64.3	[< 1.3]	138	[< 1.4]	0.560	[< 1.4]	0	[< 1.4]	0	[< 1.4]	0	231
MC-to-data eff. weights				4.77		20.2		59.3		126		0.525		0		0		0	211
Cuts SRoffWZ-nj																			
n _{jets} n _{jets} n _{jets}			[> 0]	7.20	[> 0]	23.8	[> 0]	110	[> 0]	161		[> 0]	2.64			[> 0]	0		304
E _T miss [GeV]		-	[< 200]	6.52	[< 200]	21.3	[< 200]	102	[< 200]	150		[< 200]	2.64			[< 200]	0		282
$E_{\rm T}^{\rm miss}$ signif.		-	[> 3.0]	4.72	[> 3.0]	16.1	[> 3.0]	76.3	[> 3.0]	106		[> 3.0]	1.70			[> 3.0]	0		205
$m_{\mathrm{T}}^{\mathrm{minmll}}$ [GeV]			[< 50]	2.85	[< 50]	10.7	[< 50]	42.9	[< 60]	65.7	[< 60]	1.41	[> 90]	0	[< 60]	0	[> 90]	0	124
$p_{\rm T}^{\rm lep}/E_{\rm T}^{ m miss}$			[< 1.0]	2.54	[< 1.0]	10.6	[< 1.0]	36.5	[< 1.0]	59.9	[< 1.2]	1.34	[< 1.2]	0	[< 1.2]	0	[< 1.2]	0	111
MC-to-data eff. weights				2.31		9.82		33.7		53.0		1.25		0		0		0	100
Cuts SR _{highE_T} -0j																			
lepton $p_{\rm T}^{1,2,3}$ [GeV]									[> 25, 15, 10]	1.17e+0	03								1.17e
mmin [GeV]			[∈ [12, 15]]	44.0	[∈ [15, 20]]	120	[∈ [20, 30]]	422	[∈ [30,40]]	541		[∈ [40, 60]	11.1	1		[∈ [60,75	0.148		1.14e
m100 [GaV]			[< 115]	19.1	[< 120]	76.3	[< 130]	388	[< 140]	540		[< 160]	11.1			[< 175]	0.148		1.03e
n _{jets} n _{jets} GeV			[= 0]	11.6	[= 0]	49.6	[= 0]	239	[= 0]	341		[= 0]	7.28			[= 0]	0.148		649
E _T miss [GeV]			[> 50]	2.05	[> 50]	10.3	[> 50]	50.8	[> 50]	67.0		[> 50]	1.08			[> 50]	0		131
$E_{\rm T}^{\rm miss}$ signif.			[> 3.0]	1.80	[> 3.0]	9.37	[> 3.0]	46.1	[> 3.0]	60.5		[> 3.0]	0.805			[> 3.0]	0		119
mminmil [GeV]			[< 50]	1.74	[< 50]	8.84	[< 60]	43.3	[< 60]	52.4	[< 70]	0.805	[> 90]	0	[< 70]	0	[> 90]	0	107
MC-to-data eff. weights			[< 30]	1.84	[< 30]	8.03	[< 00]	40.2	[< 60]	48.6	[< /0]	0.760	[> 90]	0	[< /0]	0	[> 90]	0	99.5
Cuts SRoffWZ -nj				1.04		0.05		40.2		40.0		0.700		0		- 0		- 0	77
lepton $p_{\mathrm{T}}^{1,2,3}$ [GeV]									[>4.5,3]	1.79e+0	03								1.79e
$m_{\ell\ell}^{\min}$ [GeV]	[∈ [1, 12]]	78.4	[∈ [12, 15]]	83.5	[∈ [15, 20]]	207	[∈ [20, 30]]	661	[∈ [30, 40]]	746	1	[∈ [40, 60]	14.5	1		[∈ [60,75	g]] 0.148		1.79e
m100 [GoV]	[< 112]	25.2	[< 115]	34.8	[< 120]	131	[< 130]	607	[< 140]	744		[< 160]	14.5			[< 175]	0.148		1.796
$m_{\Gamma_2}^{PT}$ [GeV] $n_{\text{jets}}^{PT} > 30 \text{ GeV}$	[< 112]	9.71	[< 115]	15.8	[< 120]	52.7	[< 130]	252	[< 140]	287		[< 160]	5.24			[< 1/5]	0.148		622
n_{jets} $E_{\text{T}}^{\text{miss}}$ [GeV]																	0		
	[> 200]	0.713	[> 200]	2.09	[> 200]	5.85	[> 200]	22.3	[> 200]	24.1		[> 200]	7.10e-02			[> 200]			55.1
E ^{miss} signif.	[> 3.0]	0.713	[> 3.0]	2.09	[> 3.0]	5.85	[> 3.0]	22.3	[> 3.0]	24.1		[> 3.0]	7.10e-02			[> 3.0]	0		55.1
$p_{\mathrm{T}}^{\mathrm{lep}}/E_{\mathrm{T}}^{\mathrm{miss}}$	[< 0.2]	0.611	[< 0.2]	1.99	[< 0.3]	5.39	[< 0.3]	14.6	[< 0.3]	13.8		[< 1.0]	7.10e-02			[< 1.0]	0		36.4
MC-to-data eff. weights		0.594		1.92		4.94		13.4		12.6			7.20e-02				0		33.5

Detailed cutfows provided for each SR (and inclusive SRs —) and some of the most representative signal mass points (for off-shell WZ, this includes Wino-Bino(-) and Higgsino reinterpretations)

Acceptance

Truth-level acceptances with respect to total sparticle production for all mass points and inclusive SRs in every scenario and reinterpretation

Efficiency

• Reconstruction efficiencies (= full signal selection / accepted events) for all mass points and inclusive SRs in every scenario and reinterpretation

Conclusions

- ATLAS search for the production of chargino-neutrelino decaying via WZ, W*Z* and Wh into three light-flavour leptons
 - Off-shell WZ also reinterpreted in the context of Wino-Bino(-) and Higgsino scenarios
 - Data compatible with SM prediction
 - Results combined with each other and with previous ATLAS compressed search in two leptons
 - Full Run 2 follow-up on RJR search → no excess found with respect to SM prediction
- All results and material provided as part of the recently released HEPData
 - Efforts made to ensure the material provided to be **suitably preserved** and **usable for reinterpretations** and any follow-up studies

Back-up

Lepton selection efficiency and fake rejection

 Selection efficiency for signal, lowest-p_T lepton in a three baseline off-shell WZ selection

- Probability for a SM Z+jets event to be accompanied by a fake/non-prompt lepton in a region with ≥2 signal leptons
- Non-prompt lepton BDT selection designed to keep 70%-90% efficiency for real leptons ($p_T \le 20$ GeV), with a rejection factor of 2-3 for fake/non-prompt leptons passing the isolation criteria

[50, 100]

[0, 100]

> 160

> 100

[100, 160]

 $m_{\rm T}$ [GeV]

On-shell WZ/Wh SR definitions

			Pre	eselection requiren	nents		
Variable	_	SI	₹ ^{WZ}	SR _{SFOS}	SR _{DFOS}		
$n_{\text{lep}}^{\text{baseline}}, n_{\text{lep}}^{\text{sig}}$	nal			= 3			
Trigger				dilepton			
$p_{\mathrm{T}}^{\ell_{1}}, p_{\mathrm{T}}^{\ell_{2}}, p_{\mathrm{T}}^{\ell_{3}}$	[GeV]			> 25, 20, 10			
$E_{\rm T}^{\rm miss}$ [GeV]				> 50			
$n_{b ext{-jets}}$				= 0			
	eto $m_{\ell\ell}$ [GeV]	>	12	> 12	-		
$n_{ m SFOS}$		\geq	1	≥ 1	= 0		
$m_{\ell\ell}$ [GeV]		∈ [75	, 105]	∉ [75, 105]	-		
$ m_{3\ell}-m_Z $	[GeV]	>	15	> 15	-		
		Salactic	n requir	ramants			
				$\frac{\text{GeV}, n_{\text{jets}} = 0}{\text{GeV}}$			
m _T [GeV]				$\frac{\text{GeV}, n_{\text{jets}} = 0}{\text{ss}}$ [GeV]			
	CDWh 1. [50	1001			CDWh 2 150		
[0, 100]	SR _{SFOS} -1: [50,	100]	SR _{SFOS}	-2: [100, 150]			
[100, 160]	SR _{SFOS} -4: [50,	100]		SR_{SFOS}^{Wh} - 5: >			
> 160	SR _{SFOS} -6: [50,	[50, 100] $SR_{SFOS}^{Wh} - 7: > 100$					
	m_i	$m_{\ell\ell} \le 75 \text{ GeV}, n_{\text{jets}} > 0, H_{\text{T}} < 200 \text{ GeV}$					
m_{T} [GeV]				ss [GeV]			
[0, 50]			SR _{SFOS} -	8: [50, 100]			

SR_{SFOS}-9: [50, 100]

 SR_{SFOS}^{Wh} - 12: [50, 100] SR_{SFOS}^{Wh} - 13: [100, 150] SR_{SFOS}^{Wh} - 14: > 150

 $\frac{m_{\ell\ell} \ge 105 \text{ GeV}, n_{\text{jets}} = 0}{E_{\text{T}}^{\text{miss}} \text{ [GeV]}}$

 $SR_{SFOS}^{Wh} - 16: > 150$

 SR_{SFOS}^{Wh} -18: [100, 200] SR_{SFOS}^{Wh} -19: > 200

 $SR_{SFOS}^{Wh} - 11: > 150$

SR_{SFOS}-10: [100, 150]

	Selection requirements									
	$n_{\rm jets} = 0$									
$m_{\rm T}$ [GeV]		$E_{\mathrm{T}}^{\mathrm{miss}}$ [G	leV]							
[100, 160]	SR ^{WZ} -1: [50, 100]	SR ^{WZ} -2: [100, 150]	SR^{WZ} -3: [150, 200]	$SR^{WZ}-4: > 200$						
> 160	SR ^{WZ} -5: [50, 150]	SR ^{WZ} -6: [150, 200]	SR ^{WZ} -7: [200, 350]	$SR^{WZ} - 8: > 350$						
	$n_{\rm jets} > 0, H_{\rm T} < 200 {\rm GeV}$									
m _T [GeV]		$E_{\mathrm{T}}^{\mathrm{miss}}$ [G	leV]							
[100, 160]	SR ^{WZ} -9: [100, 150]	SR ^{WZ} -10: [150, 250]	SR ^{WZ} -11: [250, 300]	$SR^{WZ}-12: > 300$						
> 160	SR ^{WZ} -13: [50, 150]	SR ^{WZ} -14: [150, 250]	SR ^{WZ} -15: [250, 400]	$SR^{WZ}-16: > 400$						
	$n_{\text{jets}} > 0, H_{\text{T}} > 200 \text{ GeV}, H_{\text{T}}^{\text{lep}} < 350 \text{ GeV}$									
m _T [GeV]		$E_{\mathrm{T}}^{\mathrm{miss}}$ [G	leV]							
> 100	SR ^{WZ} -17: [150, 200]	SR ^{WZ} -18: [200, 300]	SR ^{WZ} -19: [300, 400]	SR^{WZ} -20: > 400						

	Selection requirements						
Variable	SR _{DFOS} -1	SR _{DFOS} -2					
$n_{ m jets}$	= 0	∈ [1, 2]					
$E_{\rm T}^{\rm miss}$ significance	> 8	> 8					
$p_{\mathrm{T}}^{\ell_3}$ [GeV]	> 15	> 20					
$\Delta R_{\rm OS,near}$	< 1.2	< 1.0					

SR_{SFOS}-17: [50, 100]

SR_{SFOS}-15: [50, 150]

Off-shell WZ SR definitions

	Preselection requirements						
Variable	SR ^{offWZ} -0j	SR ^{offWZ} _{low} ∉ _r -nj	$SR_{highE_{T}}^{offWZ}$ -0j	$SR_{highE_{r}}^{offWZ}$ -nj			
$n_{\rm lep}^{\rm baseline}$, $n_{\rm lep}^{\rm signal}$			= 3				
$n_{ m SFOS}$			≥ 1				
$m_{\ell\ell}^{\rm max}$ [GeV]			< 75				
$m_{\ell\ell}^{\min}$ [GeV]	∈ [1,75]						
$n_{b ext{-jets}}$	= 0						
$\min \Delta R_{3\ell}$	> 0.4						
Resonance veto $m_{\ell\ell}^{\min}$ [GeV]		∉ [3, 3.2], ∉ [9, 12	2]	-			
Trigger	(multi-)lepton	((mult	i-)lepton $\parallel E_{\mathrm{T}}^{\mathrm{miss}}$)			
$n_{ m jets}^{ m 30~GeV}$ $E_{ m T}^{ m miss}$ [GeV]	=0	≥ 1	= 0	≥ 1			
$E_{\rm T}^{\rm miss}$ [GeV]	< 50	< 200	> 50	> 200			
$E_{\rm T}^{ m miss}$ significance	> 1.5	> 3.0	> 3.0	> 3.0			
$E_{\mathrm{T}}^{\mathrm{miss}}$ significance $p_{\mathrm{T}}^{\ell_1}, p_{\mathrm{T}}^{\ell_2}, p_{\mathrm{T}}^{\ell_3}$ [GeV]		> 10		$> 4.5(3.0)$ for $e(\mu)$			
$ m_{3\ell} - m_Z $ [GeV]	$> 20 \ (\ell_{\mathrm{W}}$	= e only)		-			
$\min \Delta R_{ ext{SFOS}}$	$[0.6, 2.4]$ (ℓ	w = e only		-			

	Selection requirements								
Variable	a	b	С	d	e	f1	f2	g1	g2
$m_{\ell\ell}^{\rm min}$ [GeV]	[1, 12]	[12, 15]	[15, 20]	[20, 30]	[30, 40]	[40, 60]		[60, 75]	
	SR ^{offWZ} _{lowE} , common								
$m_{\ell\ell}^{\rm max}$ [GeV]	×	< 60	< 60	< 60	< 60	-	-	-	-
$m_{\rm T}^{\rm mllmin}$ [GeV]	×	< 50	< 50	< 50	< 60	< 60	> 90	< 60	> 90
$m_{\rm T2}^{100} [{\rm GeV}]$	×	< 115	< 120	< 130	-	-	-	-	-
$\min \Delta R_{ ext{SFOS}}$	×	< 1.6	< 1.6	< 1.6	-	-	-	-	-
$p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2}, p_{\rm T}^{\ell_3}$ [GeV]	×	> 10	> 10	> 10	> 10	> 15	> 15	> 15	> 15
	${\sf SR}^{\sf offWZ}_{\sf 1oWE_{\sf r}}$ -0 j								
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{lep}} /E_{\mathrm{T}}^{\mathrm{miss}}$	×	< 1.1	< 1.1	< 1.1	< 1.3	< 1.4	< 1.4	< 1.4	< 1.4
$m_{3\ell}$ [GeV]	×	-	-	-	-	> 100	> 100	> 100	> 100
					$SR_{low\vec{E}_{\tau}}^{offWZ}$ -nj				
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{lep}} /E_{\mathrm{T}}^{\mathrm{miss}}$	×	< 1.0	< 1.0	< 1.0	< 1.0	< 1.2	< 1.2	< 1.2	< 1.2
	SR ^{offWZ} _{highE,} common								
$m_{\rm T2}^{100} [{\rm GeV}]$	< 112	< 115	< 120	< 130	< 140	< 160	< 160	< 175	< 175
	$SR^{offWZ}_{highE_{r}}$ -0 j								
$p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2}, p_{\rm T}^{\ell_3}$ [GeV]	× > 25, > 15, > 10								
$m_{\mathrm{T}}^{\mathrm{mllmin}}$ [GeV]	×	< 50	< 50	< 60	< 60	< 70	> 90	< 70	> 90
	$SR^{offWZ}_{highF_{\mathtt{T}}}$ -nj								
	f g								g
$p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2}, p_{\rm T}^{\ell_3}$ [GeV]				> 4.5	5 (3.0) for a	e (μ)			
$ \mathbf{p}_{\mathrm{T}}^{\mathrm{lep}} /E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.2	< 0.2	< 0.3	< 0.3	< 0.3	<	1.0	< 1	1.0

Off-shell WZ SRs: m_{II} and m_{T2}^{100} binning

Inclusive SR definitions

	$SR^{WZ} (m_{\ell\ell} \in [75, 105] \text{ GeV})$						
	$n_{\text{jets}} = 0$	$n_{\rm jets} > 0$					
$m_{\rm T}$ [GeV]	$E_{ m T}^{ m miss}$ [GeV]						
[100, 160]	$incSR^{WZ}-1: [100, 200]$ $incSR^{WZ}-2: > 20$	00 incSR WZ -3: [150,250] incSR WZ -4: > 250					
> 160	$incSR^{WZ}$ -5: > 200	$incSR^{WZ}$ -6: > 200					
	SR^{Wh}_{SFOS}	$_{\rm S} (m_{\ell\ell} \le 75 \text{ GeV})$					
	$n_{\rm jets} = 0$	$n_{\rm iets} > 0$					
$m_{\rm T}$ [GeV]	$E_{ m T}^{ m miss}$ [GeV]						
[0, 100]	$incSR_{SFOS}^{Wh}$ -7: > 50	- H.					
[100, 160]	$incSR_{SFOS}^{Wh}$ -8: > 50	$incSR_{SFOS}^{Wh}$ -9: > 75					
> 160	$incSR_{SFOS}^{Wh}-10: > 50$	$incSR_{SFOS}^{Wh}-11: > 75$					
	SR^{Wh}_{DFOS}						
	incSR _{DFOS} -12: $n_{\text{jets}} \in [0, 2]$, $\Delta R_{\text{OS,near}} < 1.2$, 3rd lepton $p_{\text{T}} > 20$ GeV						

		incSR	offWZ night, -nj		
	a	b	c1	c2	
$m_{\ell\ell}^{\min}$ [GeV]	[1, 12]	[12, 15]	[1, 20]	[15, 20]	
	$SR_{highE_r}^{offWZ}$ -nj[a]	$SR_{highE_r}^{offWZ}$ -nj[b]	SR ^{offWZ} _{highE} ,-nj[a-c]	SR ^{offWZ} _{highE_r} -nj[c]	
	${\sf incSR_{lowE_t}^{offWZ}}$ ${\sf incSR_{highE_t}^{offWZ}}$				
	b	С	b	С	
$m_{\ell\ell}^{\min}$ [GeV]	[12, 15]	[12, 20]	[12, 15]	[12, 20]	
	SR _{lowE} -0j[b],	SR _{lowE} -0j[b-c],	SR _{highE} -0j[b],	SR _{highE_r} -0j[b-c],	
	SR _{lowE} ,-nj[b]	SR _{lowE} -nj[b-c]	$SR_{highE_{\tau}}^{offWZ}$ -nj[b]	SR _{highE} -nj[b-c]	
			incSR ^{offWZ}		
	d	e1	e2	f1	f2
$m_{\ell\ell}^{\min}$ [GeV]	[12, 30]	[12, 40]	[20, 40]	[12, 60]	[30, 60]
	SR _{lowE} -0j[b-d],	SR _{lowE} -0j[b-e],	SR ^{offWZ} -0j[c-e],	SR _{lowE} ,-0j[c-f2],	SR _{lowE} -0j[e-f2],
	SR _{lowE} ,-nj[b-d],	SR _{lowE} -nj[b-e],	$SR_{lowE_{r}}^{offWZ}-nj[c-e],$	SR _{lowE} ,-nj[c-f2],	SR _{lowE} -nj[e-f2],
	SR _{highE} -0j[b-d],	SR _{highE} -0j[b-e],	SR _{highE} -0j[c-e],	SRhighE -0j[c-f2],	SR _{highE} -0j[e-f2],
	SR _{highE} -nj[b-d]	SR _{highE,} -nj[b-e]	SR _{highE} ,-nj[c-e]	SR _{highE} -nj[c-f]	SR ^{offWZ} _{highE} -nj[e-f]
		incS	R ^{offWZ}		
	g1	g2	g3	g4	
$m_{\ell\ell}^{\min}$ [GeV]	[12, 75]	[30, 75]	[40, 75]	[60, 75]	
	SR _{lowE} ,-0j[b-g2],	SR _{low#} -0j[e-g2],	$SR_{lowE_r}^{offWZ}-0j[f1-g2],$	$SR_{lowE_r}^{offWZ}-0j[g1-g2],$	
	$SR_{lowE_c}^{offWZ}$ -nj[b-g2],	SR _{low#} -nj[e-g2],	SR _{lowE} -nj[f1-g2],	SR _{lowE} -nj[g1-g2],	
	SR _{highE} -0j[b-g2],	SR _{highE} -0j[e-g2],	SR _{highE} -0j[f1-g2],	SR _{highE} -0j[g1-g2],	
	SRoffWZ -nj[b-g]	SR _{highE} -nj[e-g]	SR _{highE} -nj[f1-g]	SR _{highE} -nj[g]	

RJR regions definitions

	Selection requirements						
Variable	CR3ℓ-VV	VR3ℓ-VV	SR3ℓ-Low	CR3ℓ-ISR-VV	VR3ℓ-ISR-VV	SR3ℓ-ISR	
n_{lep}		= 3			= 3		
$n_{ m jets}$		= 0		≥ 1	≥ 1	$\in [1, 3]$	
		= 0			=0		
$n_{b ext{-jets}} \ p_{\mathrm{T}}^{\ell_1}, p_{\mathrm{T}}^{\ell_2}, p_{\mathrm{T}}^{\ell_3} ext{ [GeV]}$		> 60, 40, 30			> 25, 25, 20		
$m_{\ell\ell}$ [GeV]		\in [75, 105]			\in [75, 105]		
$m_{\rm T}$ [GeV]	$\in (0, 70)$	\in (70, 100)	> 100	< 100	> 60	> 100	
$H_{3,1}^{\text{PP}}$ [GeV]	> 250	> 250	> 250		-		
$p_{\rm T}^{\rm PP,lab}/(p_{\rm T}^{\rm PP,lab} + H_{\rm T3.1}^{\rm PP})$	< 0.2	< 0.2	< 0.05		-		
$p_{\mathrm{T}}^{\mathrm{PP,lab}}/(p_{\mathrm{T}}^{\mathrm{PP,lab}} + H_{\mathrm{T}3,1}^{\mathrm{PP}}) + H_{\mathrm{T}3,1}^{\mathrm{PP}}/H_{\mathrm{T}3,1}^{\mathrm{PP}}$	> 0.75	> 0.75	> 0.9		-		
$\Delta\phi_{\mathrm{ISR,I}}^{\mathrm{CM}}$		-			> 2.0		
$R_{\rm ISR}$		-			$\in (0.55, 1.0)$		
R_{ISR} $p_{\text{T,ISR}}^{\text{CM}}$ [GeV]		-		> 80	> 80	> 100	
$p_{\mathrm{T,I}}^{\mathrm{CM}}$ [GeV]		-		> 60	> 60	> 80	
$p_{\mathrm{T,I}}^{\mathrm{CM}}$ [GeV] $p_{\mathrm{T}}^{\mathrm{CM}}$ [GeV]		-		< 25	> 25	< 25	

Systematics breakdown plots

Composition scheme used for combination

• Overlapping areas represent the signal points where the corresponding combination has been taken into account

PyHF patchsets

