Search for Electroweakinos using Fully-hadronic Final states with Boosted Boson Jets in SATLAS

Shion Chen (UPenn) 25 Oct. 2021 RAMP Meeting #6

Introduction

Target: Inclusive EWKino pair production

- \circ Two 'species' with large mass splitting Δm (heavy, light) > 400GeV.
- \circ R-parity consv. \rightarrow **Di-boson** + **E**_T^{miss}

Highlights:

- New fully-had. final states + boosted boson tagging
 drastically improved the high mass sensitivity.
- Event selection / Limit presentation
 targeting various realistic models.

Boosted boson jet

Published materials:

- o arXiv: 2108.07586 (accepted by PRD)
- <u>ATLAS publication webpage</u> / <u>HEPData</u> containing the main/auxiliary materials
- Dedicated talk in SUSY2021 (Y. Okazaki)

Analysis Strategy

• Six "di-boson types" can be considered in the signals: WW / WZ / Wh / ZZ / Zh / hh

- Using two final state categories: qqqq and bbqq[†]
- One signal region (SR) per di-boson type, segmented by different 'boosted boson tagging'.
- Background rejection cuts:

Large E_T^{miss} , m_{eff} , min. $\Delta \varphi$ (j, E_T^{miss}), veto b-jets outside the jets used for boson tagging etc.

† bbbb is not considered here since covered by the other analysis to come)

Boosted Boson Tagging

e.g. W/Z→qq tagging efficiency

Common: Large-R jets (R=1.0) with p_T>200GeV and m_J>40GeV

W/Z→qq tagging (see also <u>ATL-PHYS-PUB-2020-017</u>):

 \circ p_T dependent cuts in m_J, D₂ (~two-bodyness), n_{Tracks}

Z/h→bb tagging (see also arXiv $\underline{1906.11005}$):

- Exactly two b-tagged track jets (R=0.05-0.4, p_T dependent) inside the large-R jet radius.
- $\circ~m_{\rm J} \in$ [70,100] GeV ([100, 135] GeV) for Z (h) tagging

25 Oct. 2021

• Main backgrounds: $Z(\rightarrow vv)$ +jets, $W(\rightarrow \ell v)$ +jets, $VV(\rightarrow \ell vqq)$ +jets

Typical BG yields in the SRs: a few events, with 20-30% accuracy for the estimation.
 Stat. uncertainty dominates (50-100%).

\circ No excess beyond the SM.

 \circ Benchmark models conventionally considered in collider interpretation for decades i.e.

i.e. bino-like LSP & wino-like degenerate NLSP, single production mode (C1C1 or C1N2), 100% BR.

Model Interpretation (2) - 'Realistic' Bino-LSP models

				ilde W	\tilde{H} via W \tilde{V} ia Z/r \tilde{V}^0
Model	Production	Branching ratio		$\tilde{\chi}_1^{\pm}$ \longrightarrow $\tilde{\chi}_2^0$	$\tilde{\chi}_1^{\pm}$ \longrightarrow $\tilde{\chi}_2^0$
$(\widetilde{W},\widetilde{B})$	$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$	$ \begin{aligned} & \mathcal{B}(\widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^{\hat{0}}) = 1 \\ & \mathcal{B}(\widetilde{\chi}_2^{0} \to Z \widetilde{\chi}_1^{0}) \text{ scanned} \end{aligned} $			
$(\widetilde{H},\widetilde{B})$	$\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0, \\ \widetilde{\chi}_1^{\pm} \widetilde{\chi}_3^0, \widetilde{\chi}_2^0 \widetilde{\chi}_3^0$	$\begin{aligned} \mathcal{B}(\widetilde{\chi}_{1}^{\pm} \to W \widetilde{\chi}_{1}^{0}) &= 1\\ \mathcal{B}(\widetilde{\chi}_{2}^{0} \to Z \widetilde{\chi}_{1}^{0}) \text{ scanned}\\ \mathcal{B}(\widetilde{\chi}_{3}^{0} \to Z \widetilde{\chi}_{1}^{0}) &= 1 - \mathcal{B}(\widetilde{\chi}_{2}^{0} - Z \widetilde{\chi}_{1}^{0}) \end{aligned}$	$\rightarrow Z \widetilde{\chi}_1^0)$	\tilde{B} $\tilde{\chi}_1^0$	\tilde{B} $\tilde{\chi}_1^0$
				(a) (\tilde{W}, \tilde{B})	(b) (\tilde{H}, \tilde{B})
○ Conside	ŴŴ(ĤĤ)→Bĺ — 800⊡	\widetilde{B} +XX (\widetilde{W} : $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}$, \widetilde{H} : $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{3}^{0}$, \widetilde{B} : $\widetilde{\chi}_{1}^{0}$, X=W/Z/h))	$\widetilde{W}\widetilde{W}(\widetilde{H}\widetilde{H}) \rightarrow \widetilde{B}\widetilde{B} + XX \ (\widetilde{W}: \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}, \widetilde{H}:$ $ \qquad \qquad$	$\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{3}^{0}, \widetilde{B}:\widetilde{\chi}_{1}^{0}, X=W/Z/h)$
Simultan a		√s = 13 TeV, 139 fb ⁻¹ , 95% CL	Expected limit		13 TeV, 139 fb ⁻¹ , 95% CL Observed limit
sensitivit ર્	$ \begin{array}{c} 1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\widetilde{\chi}_{1}^{0}$ + B($\widetilde{\chi}_{3}^{0} \rightarrow Z \widetilde{\chi}_{1}^{0}$) = 100% for (\widetilde{H} , \widetilde{B}) $\rightarrow Z \widetilde{\chi}_{1}^{0}$) = 100%		$ \underbrace{\begin{array}{c} \overbrace{\mathcal{X}} \\ \overbrace{\mathcal{X}} \atop \overbrace{\mathcal{X}} \\ \overbrace{\mathcal{X}} \\ \overbrace{\mathcal{X}} \\ \overbrace{\mathcal{X}} \\ \overbrace{\mathcal{X}} \\ \overbrace{\mathcal{X}$	00% for (Ĥ, B)
○ Neutrali	$500\begin{bmatrix} - & - & B(\tilde{\chi}_2) \\ - & - & B(\tilde{\chi}_2) \end{bmatrix}$	$\rightarrow Z \widetilde{\chi}_{1}^{\circ}) = 75\%$ $\Rightarrow Z \widetilde{\chi}_{1}^{\circ}) = 50\%$		$500\begin{bmatrix} - & - & B(\tilde{\chi}_2^\circ \rightarrow Z\tilde{\chi}_1^\circ) = 75\%\\ - & - & B(\tilde{\chi}_2^\circ \rightarrow Z\tilde{\chi}_1^\circ) = 50\% \end{bmatrix}$	(Ŵ, Ĩ)
for the si	400 B($\tilde{\chi}_{2}^{0}$	$\rightarrow Z \tilde{\chi}_{1}^{0} = 25\% $ (W, B)		$400 \stackrel{\text{L}}{=} \cdots B(\tilde{\chi}_2^0 \to Z\tilde{\chi}_1) = 30\%$	
→ All yie	300 E B(X ⁰ ₂	$\rightarrow Z \widetilde{\chi}_1^0 = 0\%$		$300\left[\frac{1}{2}\right] \longrightarrow B(\widetilde{\chi}_{2}^{0} \rightarrow Z\widetilde{\chi}_{1}^{0}) = 0\%$	
\circ For $(\tilde{\mathbf{v}}_{host})$	$\sim 200 \frac{1}{10} \sim \sim \sim$	(Ĥ, B)		200	
into the r					
	300 400	500 600 700 800 900 10	$m(\tilde{\chi}_{1}^{\pm})$ [GeV]	300 400 500 600 /	$m(\tilde{\chi}_{1}^{\pm})$ [GeV]

25 Oct. 2021

SUSY EWK0L (ATLAS) - RAMP Meeting #6

• For $(\tilde{\chi}_{heavy}, \tilde{\chi}_{light}) = (\tilde{H}, \tilde{B})$, the limits are also interpreted into the **resonant DM scenario ('funnel').** • Strongest limit ever obtained in the collier experiments.

Model Interpretation (3) - 'Realistic' Wino/Higgsino-LSP models

Model Production Bra	anching ratio	$\tilde{\chi}_2^{\pm}$	$\tilde{\chi}_2^{\pm}$ H $\tilde{\chi}_3^0$ $\tilde{\chi}_2^0$
$(\widetilde{W},\widetilde{H})$ $\widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{2}^{\mp}, \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{3}^{0}$ De	etermined from $(M_2, \mu, \tan \beta)$		
$(\widetilde{H},\widetilde{W}) \qquad \begin{array}{c} \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{2}^{\mp}, \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{2}^{0}, \\ \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{3}^{0} \end{array} \text{De}$	etermined from $(M_2, \mu, \tan \beta)$	$\tilde{\chi}_1^{\pm}$ \tilde{H} $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$	$\tilde{\chi}_1^{\pm}$ \tilde{W} $\tilde{\chi}_1^0$

(c) (\tilde{W}, \tilde{H})

• Again, all production modes with non-100% BRs.

25 Oct. 2021

SUSY FWKOI (ATIAS) - RAMP Meeting #6

(d) (\tilde{H}, \tilde{W})

Model Interpretation (3) - 'Realistic' Wino/Higgsino-LSP models

		- <i>Ŵ</i>	$ ilde{H}$ ~0
Model	Production Branching ratio	$\tilde{\chi}_2^{\pm}$ $\tilde{\chi}_3^0$	$\tilde{\chi}_2^{\pm}$
$(\widetilde{W},\widetilde{H})$	$\widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{2}^{\mp}, \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{3}^{0}$ Determined from $(M_{2}, \mu, \tan\beta)$		
$(\widetilde{H},\widetilde{W})$	$ \begin{array}{c} \widetilde{\chi}_{2}^{\pm} \widetilde{\chi}_{2}^{\mp}, \widetilde{\chi}_{2}^{\pm} \widetilde{\chi}_{2}^{0}, \\ \widetilde{\chi}_{2}^{\pm} \widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{3}^{0} \end{array} \text{ Determined from } (M_{2}, \mu, \tan \beta) $	$- \tilde{\chi}_{1}^{\pm} \tilde{H} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$	$\tilde{\chi}_1^{\pm}$ \tilde{W} $\tilde{\chi}_1^0$
		11	V V

(c) (\tilde{W}, \tilde{H})

• Again, all production modes with non-100% BRs.

25 Oct. 2021

SUSY EWK0L (ATLAS) - RAMP Meeting #6

(d) (\tilde{H}, \tilde{W})

Model Interpretation (4) - Higgsino→gravitino/axino models

Discussion on published materials

The exhausted list can be found in the backup

25 Oct. 2021

SUSY EWK0L (ATLAS) - RAMP Meeting #6

Signal region	$\langle \epsilon \sigma \rangle_{ m obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	$S_{\exp}^{95}(\pm 1\sigma)$	CL _b	p(s=0)(Z)
SR-4Q-WW	0.032	4.5	$4.2^{+1.8}_{-1.0}$	0.55	0.44 (0.15)
SR-4Q-WZ	0.036	5.0	$5.1^{+2.1}_{-1.3}$	0.46	-
SR-4Q-ZZ	0.025	3.6	$4.1^{+1.8}_{-1.0}$	0.30	-
SR-4Q-VV	0.034	4.7	$5.3^{+2.3}_{-1.5}$	0.38	-
SR-2B2Q-WZ	0.033	4.7	$4.0^{+1.7}_{-0.7}$	0.66	0.33 (0.44)
SR-2B2Q-Wh	0.022	3.1	$3.9^{+1.3}_{-0.7}$	0.28	-
SR-2B2Q-ZZ	0.033	4.5	$4.1^{+1.7}_{-0.9}$	0.63	0.37 (0.32)
SR-2B2Q-Zh	0.026	3.6	$3.9^{+1.4}_{-0.7}$	0.38	-
SR-2B2Q-VZ	0.032	4.4	$4.4^{+1.8}_{-1.0}$	0.50	-
SR-2B2Q-Vh	0.026	3.6	$4.4^{+1.7}_{-1.0}$	0.24	-
Disc-SR-2B2Q	0.034	4.8	$5.6^{+2.4}_{-1.6}$	0.30	_
Disc-SR-Incl	0.042	5.9	$7.2^{+2.2}_{-2.0}$	0.27	-

Two additional "discovery SRs" ORing the nominal SRs

• Can give an idea of what if we combine the multiple SRs in case of quick re-interpretation.

Signal "Acceptance"

Aux. Fig 9-11

Signal "Efficiency"

Aux. Fig 12-14

Cut flow

One mass point from the 3 wino/bino simplified models and the $(H\sim,G\sim)$ model, up to the respective representative SR

	C1C1-WW	C1N2-WZ	C1N2-Wh	(\tilde{H}, \tilde{G})
	$m(\chi_1^{\pm}/,\chi_1^0) =$	$m(\chi_1^{\pm}/\chi_2^0,\chi_1^0) =$	$m(\chi_1^{\pm}/\chi_2^0,\chi_1^0) =$	$m(\chi_1^0) = 800 \text{ GeV}$
	(700, 100) GeV	(900, 100) GeV	(900, 100) GeV	$(\widetilde{\chi}_1^0 \to ZG) = 50\%$
Initial number of events $(\mathcal{L} \times \sigma)$	619.20	348.29	348.29	482.87
Preliminary event reduction	589.57	330.51	275.97	463.29
Trigger selection and $E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	466.99	287.73	244.06	395.66
Event cleaning	395.78	245.63	207.07	336.46
Lepton veto	241.87	172.60	156.57	259.61
$n_{\text{Large}-R \text{ jets}} \ge 2$	85.18	68.52	67.95	85.00
$n_{b-\text{iet}}^{\text{unmatched}} = 0$	81.22	64.64	62.74	76.52
$\min \Delta \phi(E_{\rm T}^{\rm miss}, j) > 1.0$	58.13	44.91	42.83	53.05
SR-4Q-VV				
$n_{b-\text{jet}} \le 1$	52.01	35.02	19.83	22.99
$E_{\rm T}^{\rm miss} > 300 { m GeV}$	42.78	31.90	17.67	19.99
$m_{\rm eff} > 1300 {\rm GeV}$	20.11	23.74	12.66	12.20
$n(V_{qq}) = 2$	6.21	8.00	0.78	2.08
MC-to-data eff. weights	5.28	6.76	0.73	1.85
SR-2B2Q				
$n(J_{bb}) = 1$	2.06	7.65	19.23	26.28
$m_{\rm T2} > 250 {\rm ~GeV}$	1.60	6.60	16.67	21.97
$m_{\rm eff} > 1000 \; {\rm GeV}$	1.57	6.35	16.08	20.47
$n(V_{qq}) = 1$	0.68	3.61	8.80	8.10
SR-2B2Q-VZ				
$m(J_{bb}) \in [70, 100]$ GeV	0.40	2.65	1.40	2.55
MC-to-data eff. weights	0.34	2.34	1.27	2.21
SR-2B2Q-Vh				
$m(J_{bb}) \in [100, 135]$ GeV	0.02	0.39	6.03	3.75
MC-to-data eff. weights	0.02	0.36	5.54	3.29

Table 7: Cut flows of some representative signals up to SR-4Q-VV, SR-2B2Q-VZ, and SR-2B2Q-Vh. One signal point from the (\tilde{W}, \tilde{B}) simplified models (C1C1-WW, C1N2-WZ, and C1N2-Wh) and (\tilde{H}, \tilde{G}) is chosen.

SUSY EWK0L (ATLAS) - RAMP Meeting #6

Model-dependent cross-section

Materials available in HEP Data

 \circ All the main/aux figures and tables for the paper.

\circ Code snipet to illustrate the selection

that runs on the SimpleAnalysis framework.

• SLHA config files

For the representative mass point for the 3 wino/bino simplified models and the (H~,G~) model.

• Full likelihoods (to come soon)

Signal/BG yields in all the SRs with all the systematic variations. JSON format that runs on <u>pyhf</u>.

Models	Acceptance/Efficiency	σ upper limit	Full likelihood			
(₩,B) B(N2→ZN1)=50%			\checkmark			
(H̃,B̃) B(N2→ZN1)=50%			\checkmark			
(₩̃,Ĥ) tanβ=10, μ>0			\checkmark			
(Ĥ,Ŵ) tanβ=10, μ>0			\checkmark			
(Ĥ,Ĝ)	\checkmark	\checkmark	\checkmark			
(Ĥ,ã) B(N1→Zã)=100%			\checkmark			
Wino/Bino simplified models						
C1C1-WW	\checkmark	\checkmark	\checkmark			
C1N2-WZ	\checkmark	\checkmark	\checkmark			
C1N2-Wh	\checkmark	\checkmark	\checkmark			

Potential Ideas of Re-interpretation

Models involving more (moderately) light SUSY particles

- \circ Something in between the considered the EWKinos
 - e.g. 3rd EWKino
 - Sleptons (motivated by muon g-2)
 - \rightarrow Smaller expected signals due to the possible 1-step decays.
- \circ Case with moderately decoupled squarks
 - \rightarrow Smaller prod. xsec due to the negative interference.
- Non-prompt higgsino decays for (H~,G~) and (H~,a~) models

Both can be easily done by scaling down the expected SR yields in the JSON workspace and re-fit using the pyhf.

The sector that the same of the

Main Fig 11

SUSY EWK0L (ATLAS) - RAMP Meeting #6

Additional SR "N-1" plots

Aux. Fig 2-3

Jet mass/D2 cuts are not a fixed values but variable vs pT

 \rightarrow Ranges expressed by the vertical hash bands

Summary plots for the (W~,H~) & (H~,W~) models in the physical mass plane

Aux. Fig 6

- Main body: Limits as function of (M_2, μ)
- One for the exp., the other for the obs.

Event displays for a few SR events

Aux. Fig 16

Main display (right):

Calo cluster (yellow squares), E^{miss} (red), large-R jets (yellow cones), tracks (blue strings)

Energy profile (left bottom):

Write circles: large-R jets

25 Oct. 2021