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● That NS EoS must go to pQCD 
in              sets nontrivial 
constraints when matching
Komoltsev, Kurkela, arXiv 2111.05350
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Motivation: Why pQCD at high density?

Want to use the fact that NS matter (EoS) goes to pQCD EoS at high 
densities as asymptotic limit

● Can fill in to lower densities 
by interpolation

● That NS EoS must go to pQCD 
in              sets nontrivial 
constraints when matching

● This is why we are interested 
in pQCD, and improving pQCD 
at high density

Komoltsev, Kurkela, arXiv 2111.05350
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● At high density,             , so quarks/gluons 
quasiparticles, with quark Fermi sea*

● Approximately conformal (no mass scales)

● However, the interaction corrections do matter 
(20% effect!), and           depends on a 
renormalization mass scale (runs with energy of 
interaction)

Alford+, Rev. Mod. Phys. 80, 1455 (2008)
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a free electron gas

● QM has colored quarks/gluons as DOF

● At high density,             , so quarks/gluons 
quasiparticles, with quark Fermi sea*

● Approximately conformal (no mass scales)

● However, the interaction corrections do matter 
(20% effect!), and           depends on a 
renormalization mass scale (runs with energy of 
interaction)

Alford+, Rev. Mod. Phys. 80, 1455 (2008)

So we want to calculate 
these corrections 
accurately!

Fraga+ Astrophys. J. 781 (2014); see also 
Kurkela+ Phys. Rev. D 81 (2010).
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Motivation: what is Quark Matter? Physical properties

● QM has different physical properties than 
hadronic matter:

Fortin+ Phys. Rev. C 94, (2016), Lattimer &
Prakash, Astrophys. J. 550 (2001), Gandolfi+ Phys. Rev. C 
85 (2012)

Annala, TG, Kurkela, Nättilä, Vuorinen Nat. Phys. 
16 (2020)
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Motivation: what is Quark Matter? Physical properties

● QM has different physical properties than 
hadronic matter:

● Strategy:

Identify where EoS changes physical 
properties from hadronic → quark

Fortin+ Phys. Rev. C 94, (2016), Lattimer &
Prakash, Astrophys. J. 550 (2001), Gandolfi+ Phys. Rev. C 
85 (2012)

Annala, TG, Kurkela, Nättilä, Vuorinen Nat. Phys. 
16 (2020)
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Motivation: what is Quark Matter? Physical properties

● Similar to looking for change in 
behavior of lattice results at 
high T.

● Identify change in phase from 
change in physical properties 
of matter

HotQCD Phys.Rev.D 90 (2014), Borsanyi+ Phys. Lett. 
B 370 (2014)

7 / 33



T. Gorda (TU Darmstadt) | pQCD at high densities, IGFAE (Online) | 2021-11-17

● Can’t use cold QM EoS below 45ns ; factor 
of 5-10 higher than is relevant in NSs

● Hope that higher-order pQCD calculations 
will allow us to fix renorm. scale by, e.g., 
Principle of minimum sensitivity

Motivation: What is pQCD (cold QM)?

Currently, have large renorm.-scale dependence

P.M. Stevenson. Nucl. Phys. B 231 (1984)
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● Can’t use cold QM EoS below 45ns ; factor 
of 5-10 higher than is relevant in NSs

● Hope that higher-order pQCD calculations 
will allow us to fix renorm. scale by, e.g., 
Principle of minimum sensitivity

● Want to improve cold QM EoS to use down 
to more relevant densities

Motivation: What is pQCD (cold QM)?

Currently, have large renorm.-scale dependence

P.M. Stevenson. Nucl. Phys. B 231 (1984)
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● Systemmatic framework for calculating corrections in a series 
expansion in αs* (important caveats to come!) 

Framework of high-density calculations

Framework for cold QM computations is relativistic thermal QFT. 

free quark gas
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● Systemmatic framework for calculating corrections in a series 
expansion in αs* (important caveats to come!) 

● Language for this expansion is Feynman diagrams

Framework of high-density calculations

Framework for cold QM computations is relativistic thermal QFT. 

free quark gas

coupling
quark

gluon *(no external lines 
because this is the 
vacuum with μ>0)
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IR problems...

Important caveat is that TQFT has IR (long-wavelength) differences 
from what you would expect

e.g.:

*describes quantum + statistical 
corrections to particle 
propagation
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IR problems...

Important caveat is that TQFT has IR (long-wavelength) differences 
from what you would expect

e.g.:

gluon has a thermal mass!

*describes quantum + statistical 
corrections to particle 
propagation

● Mass screws up naive Feynman-
diagram expansions

Loop expansion ≠ coupling expansion
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...and their effects

This will modify the naive expectations:

free quark gas

← mixed; both scalesfree soft 
pressure 
(screened)

TG+ Phys. Rev. D 104 (2021), Phys. Rev. Lett. 127 (2021); 
see also TG+ Phys. Rev. Lett. 121 (2018); O(αs

2): Freedman & McLerran Phys. Rev. D 16 (1977)
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Let’s dive in!
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Defining equations of QCD as a theory

Defining equations (Minkowski space):

interactionswith
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Defining equations of QCD as a theory

Defining equations (Minkowski space):

interactionswith

Usually, the algebraic identities below are more important than the actual 
matrices:

Note that only u,d,s 
active in dense matter!
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Thermodynamics of relativistic QFTs: partition function

Want to evaluate partition function:
thermodynamic 
grand potential

conserved current
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Thermodynamics of relativistic QFTs: partition function

Want to evaluate partition function:
thermodynamic 
grand potential

●  

●

● Like in normal QFT, simplest to construct a path-integral 
representation of the partition function by dividing up the “time” 
interval into equal pieces:

conserved current
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Path integral for the partition function: Grassman variables

First need a quick summary of how to deal with fermionic (Grassman) variables.

ψ is an anticommuting variable. We define it to behave the following way:
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Path integral for the partition function: Grassman variables

First need a quick summary of how to deal with fermionic (Grassman) variables.

ψ is an anticommuting variable. We define it to behave the following way:

(Essentially, all operations defined algebraically)
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Path integral for the partition function: Coherent states

Follow Altland and Simons and use coherent states to evaluate [then bosons 
(ζ=+1) and fermions (ζ=-1) are very similar]:

so that
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Path integral for the partition function: Coherent states

Follow Altland and Simons and use coherent states to evaluate [then bosons 
(ζ=+1) and fermions (ζ=-1) are very similar]:

so that

Need the following relations:
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Path integral for the partition function: Derivation

First we want to write the trace in the partition function in terms of an integral 
over these coherent states at the beginning and final “times”:
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Path integral for the partition function: Derivation

First we want to write the trace in the partition function in terms of an integral 
over these coherent states at the beginning and final “times”:

move to end; exchanges Grassman variables!

bosonic operator

Bosons return to same state; fermions to negative the state!
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Path integral for the partition function: Derivation

Now break up into little pieces, inserting identities along the way (following Laine 
and Vuorinen)
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Taking the limit of a large N, gives:
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Path integral for the partition function: Derivation

Taking the limit of a large N, gives:

For usual Hamiltonians, Legendre transformation gives Euclidean Lagrangian 
(now go back to fields as well):
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Path integral: Summary

● Compact “time” integral

● Bosons periodic in imaginary time

● Fermions anti-periodic in imaginary time

● Path integral with Euclidean Lagrangian 
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High density

● As T→0, “time” interval becomes infinite again (periodic/antiperiodic 
doesn’t matter)
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Perturbation theory
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Interacting fields / perturbation theory

Write the action as a free part plus an interacting part,
assume interaction is small:

connected

connected corrections!

23 / 33



T. Gorda (TU Darmstadt) | pQCD at high densities, IGFAE (Online) | 2021-11-17

Interacting fields: Wick’s theorem

Q: How do we compute these connected corrections?

A: Introduce a source and differentiate:
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An example, from ɸ4 theory:
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Feynman diagrams, propagator, self-energy

An example, from ɸ4 theory:

These are Feynman Diagrams. This fundamental correlation is called the 
propagator

The self-energy are corrections to the propagator:

Full correlation 
function
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Self-energy evaluation

The self energy has a nontrivial IR limit; let’s calculate it in QCD:

Rearranging prev. expression for the one-loop gluon self energy at high density:
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(Remember Q0→Q0+iμ)

Self-energy evaluation; Hard Thermal/Dense Loop limit

When P«Q, then we are looking at the UV of this integral

UV dominated

Doing residues cuts of the integral at μ:

gluon has a thermal mass!

“Hard thermal/dense loops”
Braaten & Pisarski, Phys. Rev. D 42 (1990), 46 (1992); in cold QM context: Manuel, Phys. Rev. D 53 (1996)
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Nontrivial dependence on            in the HTL result (so more than just a thermal 
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Nontrivial functional dependence:

Similar HTL contributions for N-point gluon functions:
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free quark gas

← mixed; both scalesfree soft 
pressure 
(screened)

TG+ Phys. Rev. D 104 (2021), Phys. Rev. Lett. 127 (2021); 
see also TG+ Phys. Rev. Lett. 121 (2018); O(αs

2): Freedman & McLerran Phys. Rev. D 16 (1977)

Corrections to the EoS from different kinematic regions

Current state-of-the-art: contributions from different kinematic regions
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(HTL)

Corrections to the EoS from different kinematic regions

Current state-of-the-art: have now computed N3LO contributions from HTL 
effective theory
TG, Kurkela, Paatelainen, Säppi, Vuorinen, Phys. Rev. Lett. 127 (2021), Phys. Rev. D 104 (2021)
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Current state-of-the-art: have now computed N3LO contributions from HTL 
effective theory
TG, Kurkela, Paatelainen, Säppi, Vuorinen, Phys. Rev. Lett. 127 (2021), Phys. Rev. D 104 (2021)

Corrections to the EoS from different kinematic regions

Decreases renormalization-scale sensitivity
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Concluding remarks

● TQFT at high density is systematically improvable framework for 
calculating corrections to thermodynamic properties

● Rich EFT structure, involving multiple scales 

● Current state-of-the-art for cold QM calculations are N3LO, and are 
ongoing, using approach of kinematic regions

● Cold QM EoS restricts NS-matter EoS at lower densities
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References to books:

● A. Altland, B. Simons. Condensed matter field theory. 
Cambridge, Univ. Press (2006).

● M. Laine, A. Vuorinen. Basics of thermal field theory. Lect. 
Notes Phys. 925 (2016).

● M. Schwartz. Quantum field theory and the standard model. 
Cambridge, Univ. Press (2013).

Two books I referenced, and one I recommend for general QFT:
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