

LPCC Fast Sim Workshop

Anna Zaborowska

CERN EP-SFT

October 7, 2021

LPCC Fast Simulation Workshop

 \leftrightarrow

- 22-23 November
- 15:00-18:00 CET
- an extra hour (till 19:00) in case of need for further discussions
- zoom-only meeting

LPCC Fast Simulation Workshop

 $\leftarrow \rightarrow$

- 22-23 November
- 15:00-18:00 CET
- an extra hour (till 19:00) in case of need for further discussions
- zoom-only meeting
- proposal to have several mini-presentations on the specific topics to facilitate the discussions (instead of usual per-experiment status presentations)
- speakers within one topic would be asked to cover same questions (as much as possible)

- 1. Fast Sim applicability and accuracy
- 2. Validation
- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation

1. Fast Sim applicability and accuracy

- $\circ~$ How is fast simulation used: applied to which detectors?
- $\circ~$ Are there specific "sensitive" parts of the detector where it is difficult to get fast simulation?
- $\circ~$ Is it used widely in production?
- $\circ~$ Which physics analyses can use fast simulation, which cannot?
- $\circ~$ What are the demands on the accuracy of the (fast) simulation?
- $\circ\,$ Do you/can you tune fast simulation to collision data to get better results than from the full simulation?
- $\circ~$ How does it look now, but also how it changes for Run3 & HL-LHC?

2. Validation

- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation

1. Fast Sim applicability and accuracy

2. Validation

- $\circ~$ How do you validate fast simulation, whether it's "classical" or ML approach.
- Is it on e.g. particle shower characteristics (longitudinal/transverse profiles, etc.), on high-level results of physics analyses, ...?
- For ML, what is the metric used to validate the model and what is the objective function you are optimizing during the training?
- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation

- 1. Fast Sim applicability and accuracy
- 2. Validation
- 3. Machine Learning: Data preprocessing
 - $\circ~$ Which particle types and features (energy, angle) are considered?
 - $\circ~$ How large is the training dataset?
 - $\circ~$ How to define the structure of the input data (hits, cells, clusters, custom voxels,..)?
 - $\circ~$ Which data structure is used for the training (1D vector, images, graphs..)?
 - Which scaling is used? Is the dataset balanced (is the number of events for the different particle properties almost the same?).
 - How do you store the preprocessed data? How are the condition values (energy of the particle, angle,..) encoded?
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation

- 1. Fast Sim applicability and accuracy
- 2. Validation
- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
 - What tuning approach is adopted?
 - $\circ~$ What metric is used to compare between the performance of the model during the tuning process?
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation

- 1. Fast Sim applicability and accuracy
- 2. Validation
- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
 - $\circ~$ How is the ML trained model stored (file format)?
 - $\circ~$ Are there any specific files to store in addition to the ML model?
 - $\circ~$ Which inference library is used? How much time does it take to generate one event?
 - $\circ~$ What is the memory footprint?
 - $\circ~$ Are there any optimization approaches considered to reduce the memory?
 - $\circ~$ Has the ML simulation been tested on GPU?
- 6. Reusability and Generalisation

- 1. Fast Sim applicability and accuracy
- 2. Validation
- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation
 - $\circ~$ Are there any valuable lessons to be learnt by others?
 - Tools which can be reused? Maybe some ideas have failed for your detectors (or parts of it) and it can be useful to others?
 - $\circ~$ What are your plans, may be there is room for collaboration?

- 1. Fast Sim applicability and accuracy
- 2. Validation
- 3. Machine Learning: Data preprocessing
- 4. Machine Learning: Tuning
- 5. Machine Learning: Inference Integration
- 6. Reusability and Generalisation

6 hours (minus breaks) per 6 topics = on avg. 1h per topic, so ~ 4 10 min presentations