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Motivation

Physical situation: Deep Inelastic Scattering

γ∗A collision - scattering of a virtual photon off a nuclear target,
proton or large nuclei

[Particle Data Group Review, 2015]
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Evolution equations

BFKL
The DIS cross-section is expressed in terms of parton distributions fi
using DGLAP equations it is possible to calculate the Q2

dependence of parton distributions fi as long as Q2 is large
going to larger Q2, the number of quark and gluons increases, their
size decreases as 1/Q
at small x , the growth is particularly pronounced, moving towards
small x at fixed Q2 increases the number of gluons of fixed size 1/Q

The BFKL equation takes the form

∂ fa(x ,kT )

∂ lnx0/x
≈∑

b

Kab⊗ fb(x ,kT )

where this time ⊗ involves an integration over the transverse plane∫
∞

0 dl2T .
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Evolution equations

BK and JIMWLK
both DGLAP and BFKL are linear evolution equations
at very small x gluon recombination terms become equally
important leading to a non-linear equation

BK-JIMWLK equations:

∂ f (x ,kT )

∂ lnx0/x
≈ K ⊗ f (x ,kT )− f 2(x ,kT )

saturation scale: transverse momentum scale that determines the
onset of non-linear corrections in QCD evolution equations

QS ≈ A
1
3
( 1
x )
)0.2−0.3
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Origins of the JIMWLK equation

[K. Rummukainen, H. Weigert, Nucl. Phys. A, 2004]
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JIMWLK as Langevin equation

[K. Rummukainen, H. Weigert, Nucl. Phys. A, 2004]
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JIMWLK as Langevin equation

A more symmetric formulation was proposed by T. Lappi and H.
Mäntysaari where the evolution is applied from the left and right side of
Ux ,

U(x,s + δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)×

× exp

(
√

δ s∑
y
K(x−y) ·ξ (y)

)
.
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Initial condition

BFKL, BK and JIMWLK equations predict the dependence on x of the
unintegrated distribition f (x ,kT ). We need the shape of the distribution
at some initial value of x0.

Possible inputs:
Measurement: extract the distribution from fits to experimental
data,
Lattice QCD: calculate the object non-perturbatively,
Model: use some approximate description.

Solving numerically the JIMWLK equation 9/ 43



Initial condition

Color Glass Condensate
CGC is an effective theory for the description of high-energy
scattering in QCD
valence degrees of freedom at large-x - static sources
small-x degrees of freedom - dynamical fields

Solve classical Yang-Mills equations

[Dµ ,F
µν ] = Jν

L=−1
4
F 2 +J ·A

Jν = ρ(xT )δ (x−)δ
+ν

assuming eikonal coupling to dynamical fields and random distribution of
color charges ρ(xT ) from some probability weight W [ρ(xt)].
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Initial condition

McLerran-Venugopalan model

generate random distributions ρ(xT ) with a Gaussian W [ρ(xt)]

solve Y-M equations
calculate the distribution

Numerical formulation
work with the 2D lattice in the transverse plane

ρ(x)n = ρ(x)anλ a and 〈ρ(x)anρ(y)bl 〉= δ abδ nlδ (x−y) g
2µ2

Ny

we repeat this Ny times to model multiple color scatterings
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Initial condition

McLerran-Venugopalan model

solve Poisson equation to get the color potential

Uab
n (x) = exp

(
−igAab

n (x)
)

= exp

(
−i gρab

n (x)

∇2−m2

)
,

or more explicitly

ρab
n (x)

∇2−m2 =
1

LxLy
∑
z∈Λ̃

∑
k∈Λ

e ik(x−z)ρab
n (z)

− 4
a2

[
sin2

(
kxa
2

)
+ sin2

(
ky a
2

)]
−m2

,

calculate correlation function

C (x−y) = 〈trU†(x)U(y)〉.

physical parameters: g2µ, L, m, a
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Initial condition

Gaussian model
work with the 2D lattice in the transverse plane
ρ(x)n = ρ(x)anλ a and 〈ρ(x)anρ(y)bl 〉= δ abδ kl exp(−(x−y)2/(2R2))

we repeat this Ny times to model multiple color scatterings
physical parameters: R, L, a
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MV model: initial condition

Fixed volume: g2µL = 30.7.
Different lattice spacings: L/a = 512,1024, . . .
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Figure: Lattice spacing dependence of the initial dipole distribution as a
function of LkT .
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MV model: initial condition

Different volumes: g2µL = 30.7,61,122, . . . ,1966.
Different lattice spacings: L/a = 512,1024, . . .
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Figure: Volume and lattice spacing dependence of the initial dipole distribution
as a function of g2µx .

Solving numerically the JIMWLK equation 15/ 43



MV model: initial condition
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Figure: Volume dependence of the saturation radius of the initial distribution.
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Gaussian model: initial condition

Different volumes: R/L = 1/128,1/256, . . .
Different lattice spacings: L/a = 1024,2048, . . .
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Figure: Volume and lattice spacing dependence of the initial dipole distribution
as a function of x/R.
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Numerical implementation of the JIMWLK equation

Kernel
Position space kernel

K(x) =
x
x2 → K(n) =

n̄
n̄2 ,

where n = (nx ,ny ) is a vector of integers (ni ∈ (−L,L)) and the numbers
n̄i (n̄2) are in the chosen discretizations:

naive with a discontinuity:

n̄i =


ni −L if ni ≥ L/2,
ni if −L/2≤ ni < L/2, n̄2 = n̄2

x + n̄2
y

ni +L if ni <−L/2,

regularized with the sine function:

n̄i =
L

2π
sin

(
2πni
L

)
, n̄2 =

(
L

π

)2(
sin2

(
πnx
L

)
+ sin2

(
πny
L

))
.
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Numerical implementation of the JIMWLK equation

Kernel
In momentum space we get∫

d2x
2π

e−ikx
xi
x2 =−2π i

ki
k2 .

Again, we may discretize the right hand side following one of the two
ways

as is commonly done using lattice momenta k̄

k̄i = sin

(
2πni
Li

)
, k̄2 = 4.0

(
sin2

(
πnx
Lx

)
+ sin2

(
πny
Ly

))
.

or alternatively keeping naive lattice momenta:

k̄i = 2π
ni
Li
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Kernel
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Figure: Comparison of possible discretizations of the numerator of the kernel.
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Kernel
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Figure: Comparison of possible discretizations of the denominator of the kernel.
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Kernel
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Figure: Comparison of the position and momentum kernels. The blue and black
data points show the Fourier transform; the blue correspond to the naive
discretization of the position space kernel, whereas the black to the sin
regularized kernel. Surprisingly, both data sets agree quite well. The red data
points show the corresponding momentum kernel with the usual k̄/k̂2

definition, whereas the green data points are calculated using the simple lattice
momenta.
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Distribution evolution: MV model and fixed coupling
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Figure: Comparison of the evolved two-point correlation function as a function
of the lattice spacing. Evolution was performed with time step δ s = 0.0001 and
the total evolution time was s = 0.04.
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Distribution evolution
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Figure: Lattice spacing dependence of the evolved saturation scale using
position space formulation with continuum and lattice JIMWLK kernels.
Extrapolation to infinite volume is attempted.
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Running coupling effects

Recall the entire JIMWLK formulation

U(x,s + δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)×

× exp

(
√

δ s∑
y
K(x−y) ·ξ (y)

)
,

where the coupling constant appears in the Langevin step

s =
αS

π2 y , with y = ln
x0

x

How should we include one-loop running of the coupling constant?
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"Square root" prescription

Proposed by Rummukainen and Weingert in 2003. The running coupling
effects are accounted for with the coupling at the scale given by the size
of the parent dipole (x−y)2, i.e. we introduce a one-loop running

αs → αs(1/(x−y)2) =
4π

β0 ln 1
(x−y)2Λ2

,

with β0 = (11Nc −2Nf )/3. In the "square root" prescription becomes

U(x,s + δ s) =

= exp
[
−
√

δy

π
∑
y
U(y,s)

(√
αs(|x−y|)K(x−y)ξ (y)

)
U†(y,s)

]
×

×U(x,s)×

× exp
[√

δy

π
∑
y

√
αs(|x−y|)K(x−y)ξ (y)

]
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Noise prescription

An alternative definition of the running coupling was proposed by Lappi
and Mantysaari in 2012 as a modification of noise vectors. This has a
different physical motivation as the scale of the running coupling will be
provided by the momentum of the emitted gluon and this scale is then
argued as corresponding to the smallest one of the three relevant dipole
sizes (the “parent” and two “daughter” dipoles)

U(x,s + δ s) =

= exp
[
−
√

δ s∑
y
U(y,s)

(
K(x−y)η(y)

)
U†(y,s)

]
×

×U(x,s)×

× exp
[√

δ s∑
y
K(x−y)η(y)

]
,

where now

〈ηa,i (x)η
b,j (y)〉= δ

ab
δ
ij
∫

d2k
(2π)2 e

ik(x−y)
αs(k)
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Hatta-Iancu prescription

Hatta and Iancu provided in 2016 a formulation of the JIMWLK equation
with collinear resummation which accounts for DGLAP kind of logarithms
suppressing collinear pole of the kernel. In particular they re-investigated
the relation of momentum space expression for running of αs to small
dipole prescription. According to Hatta-Iancu the smallest dipole
prescription corresponds to dependence of αs on virtuality and not
transverse momentum. We proceed with implementation directly in the
coordinate space

αs = αs(min{|x− z|, r}) ,

where r is the size of the projectile.
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Evolution with running coupling constant: MV model
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Figure: Langevin step dependence for the "square root" prescription.
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Evolution with running coupling constant: MV model
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Figure: Langevin step dependence for the "noise" prescription.

Solving numerically the JIMWLK equation 30/ 43



Evolution with running coupling constant: MV model
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Figure: Langevin step dependence: extrapolation.
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Evolution with running coupling constant: MV model
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Figure: Lattice spacings dependence for the "square root" prescription.
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Evolution with running coupling constant: MV model
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Figure: Lattice spacings dependence for the "noise" prescription.
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Evolution with running coupling constant: MV model
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Figure: Lattice spacings dependence: extrapolation
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Evolution with running coupling constant: MV model
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Figure: Kernel discretization dependence
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Evolution with running coupling constant: Gaussian model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.5  1  1.5  2  2.5  3

C
(x

/R
, s

=
0 

an
d 

s=
0.

1)

x/R

R/a=128, L/a=8192, s=0.1, ds=0.0001
R/a=32, L/a=512, s=0.1, ds=0.0001

R/a=64, L/a=1024, s=0.1, ds=0.0001
R/a=32, L/a=2048, s=0.1, ds=0.0001
R/a=32, L/a=1024, s=0.1, ds=0.0001
R/a=16, L/a=512, s=0.1, ds=0.0001

R/a=64, L/a=8192, s=0
R/a=32, L/a=8192, s=0

R/a=128, L/a=8192, s=0
R/a=64, L/a=1024, s=0
R/a=16, L/a=1024, s=0

Gauss(0,1)

Figure: Snapshots of evolved distributions for different volumes and lattice
spacings for s = 0.1.
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Evolution with running coupling constant: Gaussian model

Different volumes: L/R = 1/64,1/128,1/256
Fixed lattice spacing: L/a = 8192
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Figure: Snapshots of evolved distributions for different volumes for s up to
s = 0.4.
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Evolution with running coupling constant: Gaussian model

Fixed volume: L/R = 1/64
Different lattice spacings: L/a = 2048,4096,8192
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Figure: Snapshots of evolved distributions for different lattice spacings for s up
to s = 0.4.
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Evolution with running coupling constant: Gaussian model
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Figure: Test of adaptive resolution improvement.

Solving numerically the JIMWLK equation 39/ 43



Evolution with running coupling constant: MV model
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Figure: Rapidity derivative of the saturation scale.
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Evolution with running coupling constant: MV model
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Figure: Rapidity derivative of the saturation scale.
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Evolution with running coupling constant: MV model
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Figure: Hatta-Iancu prescription
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Conclusions

JIMWLK equation provides a way to describe DIS data deep in the
low-x regime
numerical implementation and solution possible using the
reformulation in terms of Langevin equation
many systematic effects/ambiguities have to be studied and
understood
efficient implementation provides a useful tool for many further
investigations

Thank you very much for your attention
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