Particle Accelerators

A BRIEF (HYSTORICAL) INTRODUCTION

REYES ALEMANY FERNANDEZ (CERN, BEAMS DEPARTMENT)

Particle Accelerators

- What for?
- How can we observe such small particles?
- Let's try to build an accelerator

What for?

>30000 accelerators in use world-wide:
$>44 \%$ radiotherapy
$>41 \%$ ion implantation
$>9 \%$ industrial applications
$>4 \%$ low energy research
$>1 \%$ medical isotope production $><1 \%$ fundamental research

FUNDAMENTAL PARTITICLLES Model of AND INTERACTIONS

25.07.2022

The micro-world \rightarrow the atoms

$>$ In a typical beach there are tens of thousands of millions of millions of sand grains
> But ... within a single grain of sand, there are as many atoms!

The micro-world \rightarrow atoms' constituents

$>$ The atom nucleus weights more than 99% of the atom mass
$>$ If the atom was as big as the "Stade de France"
$>\ldots$ the nucleus would be smaller than the foot ball

How can we observe such small particles?

The structures under research are EXTRAORDINARILY SMALL ($\sim 10^{-15} \mathrm{~m}$)
\rightarrow probes with correspondingly high spatial resolution are needed. Visible light is inadequate: size $\sim 510^{-7} \mathrm{~m}$
\rightarrow what could we use instead?

$$
\begin{array}{ll}
\mathrm{mm}=10^{-3} \mathrm{~m} & \\
\mu \mathrm{~m}=10^{-6} \mathrm{~m} \\
\mathrm{~nm}=10^{-9} \mathrm{~m}
\end{array} \quad \text { - light } \quad \begin{array}{ll}
\mathrm{pm}=10^{-12} \mathrm{~m} & \Rightarrow R_{\text {atoms }} \sim 30-300 \mathrm{pm}(0.03-3 \AA) \\
\mathrm{fm}=10^{-15} \mathrm{~m} & \Rightarrow R_{\text {nucleus }} \sim 1-10 \mathrm{fm} \\
\mathrm{am}=10^{-18} \mathrm{~m} & \Rightarrow \text { Quarks }- \text { leptons }
\end{array}
$$

How can we observe such small particles?
Aggregate of molecules:
cell/bacteria

Size $=10^{-5}-10^{-7} \mathrm{~m}$

- 10 micro - 100 nano
$E=\frac{h c}{\lambda \beta} \rightarrow 0.1 \mathrm{eV}-10 \mathrm{eV}$ Alemany Fernandez

Optical microscope

How can we observe such small particles?

	Size (m)	Size	Beam energy	Instrument
Aggregate of molecules: cell/bacteria	10^{-5}	10^{-7}	10 micro meter meter	0.1 eV
Aggregate of atoms: molecules	10^{-9}	1 nano meter	1 keV	Electron microscope
Atoms: nucleus+electron s	10^{-10}	0.1 nano meter	10 keV	Synchrotron radiation
Nucleus (Oxygen: $8 p+8 \mathrm{n})$	10^{-14}	0.01 pico meter	>100	Low energy e- or p+ accelerator
Aggregate of quarks: hadrons	10^{-15}	1 femto meter	$>1 \mathrm{GeV}$	High energy p+ accelerator
Quarks+leptons	10^{-18}	1 atto meter	$>1 \mathrm{TeV}$	High energy e- or p+ collider

LHC 27 km circumference 7 TeV beam energy

[^0]

A little parenthesis about Energy Units

$>$ In physics, energy is usually measured in Joule (J)
1 Joule = energy expended (or work done) in applying a force of one newton through a distance of one metre (SI).

Energy = capacity of

 a physical system to perform work
$>$ Joule is not convenient when describing particle beams because the energy is very small, e.g.,
$>$ Therefore a new unit was invented $\rightarrow \mathrm{eV} \rightarrow$ kinetic energy gained by a particle of elementary charge $1.60210^{-19} \mathrm{C}$ as it crosses a potential difference of 1 V .
$>_{1} \mathrm{keV}=10^{3} \mathrm{eV}, 1 \mathrm{MeV}=10^{6} \mathrm{eV}, 1 \mathrm{GeV}=10^{9} \mathrm{eV}, 1 \mathrm{TeV}=10^{12} \mathrm{eV}$

How can we accelerate charged particles?

> Simplest particle accelerators use a constant electric field (DC accelerators) between two electrodes, produced by a high energy voltage generator

> One of the electrodes has the particle source
$>$ If e- beams: particle source is a thermionic cathode (widely used in vacuum technology)
$>$ In the accelerating region there is good vacuum to avoid beam-gas collisions

[^1]> Limited achievable particle energies
$>$ Depends on the maximum voltage that can be given by the generator

How can we accelerate charged particles?

What is the energy limit in DC accelerators?
$>$ CORONA FORMATION is the actual energy limit

Examples of electrostatic accelerators

$>$ Cockroft-Walton (1030's)

We had one at CERN to accelerate protons up to 750 keV

HV ~ 4 MV
$>$ Van de Graaff (1030's)

HV ~ 2 MV - 10 MV

How could we overcome the corona formation energy limit and go beyond few MeV regime?

$>$ Ising $1925 \Rightarrow$ AC voltage!!
$>$ Wideroe $1928 \rightarrow$ first successful test of AC accelerator

RF generator voltage: $U(t)=U_{\max } \sin \omega t$

AC Linear Accelerators

$>$ RF generator voltage: $\mathrm{V}(t)=V_{\max } \sin \omega t$

- Energy reached by the particle per crossed gap:

$$
F_{\text {electric }}=q E_{\text {electric }}
$$

$$
>\mathrm{E}_{\text {electric }} \text { is cte between s1 and s2 when the particle crosses the }
$$

$$
\text { gap, therefore, } q \text { and } E_{\text {electric }} \text { come out from the integral. }
$$

$$
\begin{aligned}
& \begin{array}{l}
\Delta \text { Energy }=\int_{s 1}^{s 2} F d s \\
\Delta E n e r g y=\int_{s 1}^{s 2} q E_{\text {electric }} d s
\end{array} \\
& \Delta \text { Energy }=q \text { Eelectric } \Delta s=V \\
& \Delta E n e r g y=q V=q V_{\max } \sin \varphi_{0}
\end{aligned}
$$

AC Linear Accelerators

$>$ Energy gained by the particle after passing the n-th gap:
$\Delta E n e r g y=n q V=n q V_{\max } \sin \varphi_{0}$
Energy gain is proportional to the number of stages/gaps traversed by the particle $>$ However, the largest voltage in the entire system is never greater than $\mathrm{U}_{\text {max }}^{\text {cor } n_{a} \text { discharge }}$
$>$ At CERN we have linear accelerators for the first acceleration steps: LINAC2, LINAC3, LINAC4 $_{4}$

Spanish Language Teacher Programme, R. Alemany Fernandez

What is the limitation of linear accelerators?

radiofrequency (RF) structures and a two-beam concept to produce accelerating fields as high as 100 MV per meter to reach a nominal total energy of 3 TeV

$$
\approx 50 \mathrm{~km}
$$

Size \& cost could be a problem since it grows with energy

How can we overcome the limitation of linear accelerators to increase the energy without increasing the size?

How can we overcome the limitation of linear accelerators to increase the energy without increasing the size?

How can we overcome the limitation of linear accelerators to increase the energy without increasing the size?

But how can we keep a charged particle running in circles?

Let's ask Lorentz

But how can we keep a charged particle running in circles?

$>$ We need a magnetic field
LORENTZ FORCE

$$
\vec{F}=\underset{\substack{\text { If an electric } \\
\text { field is } \\
\text { present }}}{q \cdot \overrightarrow{\text { If a magnetic }^{(\vec{v} \times \vec{B})}}+\begin{array}{c}
\text { field is } \\
\text { present }
\end{array}}
$$

q : particle charge
Can we accelerate and bend neutral particles?

Cross product of two vectors is another vector orthogonal to them

Before we continue, first we should understand the beam rigidity

$>$ What is the condition for a circular orbit in the presence of a uniform magnetic field?
Lorentz force = centrifugal force

$$
F_{\text {Lorentz }}=q \cdot v \cdot B=F_{\text {centrifugal }}=\frac{m \cdot v^{2}}{\rho}
$$

ρ : curvature radius m: particle mass v: particle velocity

$$
\begin{array}{r}
q \cdot v \cdot B=\frac{m \cdot v^{2}}{\rho} \\
p=m \cdot v
\end{array}
$$

$$
B \rho=\frac{p}{q}
$$

Particle momentum

Let's build our first circular accelerator!!

$>$ We need a magnetic field perpendicular to the particle trajectory to bend the particles
$>$ We need an electric field to give energy to the particles \rightarrow magnetic fields do not change the energy of the particles, why?

$$
\Delta E n e r g y=\int_{s 1}^{s 2} \vec{F} d \vec{s} \text { Those are vectors! They have direction and magnitude }
$$

This is the scalar product:

$$
\begin{gathered}
\text { If } A \text { and } B \text { are parallel } \rightarrow \theta=0^{\circ} \\
\rightarrow \cos \theta=1
\end{gathered}
$$

The force gives the maximum energy increase

If A and B are orthogonal $\rightarrow \theta=90^{\circ}$
$\rightarrow \cos \theta=0$
$\Delta E n e r g y=0$
Since the magnetic field is orthogonal to the particle trajectory Δ Energy $=0$

This is our first circular accelerator \rightleftharpoons cyclotron

$$
\rho=\frac{p}{q B}
$$

If B is a constant uniform magnetic field
$\rightarrow \rho$ increases as the particle momentum increases

The vacuum chamber has to be big enough to accommodate the full particle trajectory before extraction

The first circular accelerator was developed by E. O. Lawrence at Univ. California in 1930.
In 1932 Lawrence and Livingston built the first cyclotron suitable for experiments with 1.2 MeV peak energy.

A little parenthesis about Relativity

$>$ For over 200 years Newton's equations of motion were believed to describe nature correctly. But in 1905 Einstein discovered an error in these laws and proposed a solution.

$$
F=\frac{d(m \cdot v)}{d t}=\mathrm{m} \frac{d v}{d t}=m \cdot a
$$

Newton assumes m is constant
$>$ But Einstein, based on experimental observations, realised that the mass of a body increases with velocity!!

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

m_{0} is the rest mass, the mass of a not-moving body c: speed of light ($3 \times 10^{5} \mathrm{~km} / \mathrm{s}$)

A little parenthesis about Relativity

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad \square m=\gamma \cdot m_{0}
$$

Relativistic gamma factor

$$
E=m \cdot c^{2}=\gamma \cdot m_{0} \cdot c^{2}
$$

$>$ As the velocity of the particle gets closer to c , the mass m is greater and greater
$>$ The body inertia increases and increases and the force applied to move the particle is less and less efficient, so the velocity increases more and more slowly and asymptotically approaches c

$>$ But it will never be equal to c because the mass grows exponentially
e.g. LHC $\quad \gamma=\frac{E}{E_{0}}=\frac{m \cdot c^{2}}{m_{0} \cdot c^{2}}=\frac{7000 \mathrm{GeV}}{0.938 \mathrm{GeV}}=7463 \longrightarrow \frac{v}{c}=0.9999=\beta$

We are doing well so far, but MeV it is not enough, how can we reach GeV energies?

	Size (m)	Size	Beam energy	Instrument
Aggregate of molecules: cell/bacteria	10^{-5}	10 micro meter	0.1 eV	Optical microscope
	10^{-7}	100 nano meter	10 eV	
Aggregate of atoms: molecules	10^{-9}	1 nano meter	1 keV	Electron microscope
Atoms: nucleus+electron s	10^{-10}	0.1 nano meter	10 keV	Synchrotron radiation
Nucleus (Oxygen: 8p+8n)	10^{-14}	0.01 pico meter	$\begin{aligned} & >100 \\ & \mathrm{MeV} \end{aligned}$	Low energy e- or p+ accelerator
Aggregate of quarks: hadrons	10^{-15}	1 femto meter	> 1 GeV	High energy p+ accelerator
Quarks+leptons	10^{-18}	1 atto meter	> 1 TeV	High energy e- or p+ collider

What is the limitation of the cyclotrons?

$>$ If B is a constant uniform magnetic field $\rightarrow \rho$ increases as the particle momentum increases \rightarrow we get a spiral orbit \rightarrow cyclotron

$$
\rho=\frac{p}{q B}
$$

$>$ But there is a limitation to the B field
$>$ In the end the spiral gets bigger and bigger
\Rightarrow the size (= cost) of the cyclotron has to increase!

What can we do to keep the radius of the accelerator cte?

$>$ If B increases synchronously with the particle momentum such the ratio p/B remains cte, then the accelerator radius is cte.
> Synchrotron principle developed almost simultaneously by E. M. McMillan (California University) \& V. Veksler (Soviet Union) in 1945.
> 1949: Cosmotron @BNL \Rightarrow proton synchrotron of $3.3 \mathrm{GeV}, \mathrm{C} \sim 57 \mathrm{~m}$

$>$ 2008: LHC \rightarrow proton synchrotron of $7000 \mathrm{GeV}, \mathrm{C}=27 \mathrm{~km}$
$>$ There is a technical limit to the value of B, ~ 1.5 Tesla for normal conducting magnets and ~ 8 Tesla for superconducting magnets

Let's build a synchrotron

We need dipole magnets

$>$ A dipole with a uniform field deviates a particle by an angle θ
$>$ The bending angle θ depends on:
$>$ the length L
$>$ the magnetic field B
$>$ the particle momentum

$$
\text { arc } \approx \text { angle } \cdot \text { radius }
$$

$$
\begin{gathered}
\operatorname{arc}=L \quad \text { angle }=\theta \quad \text { radius }=\rho \\
\mathrm{L}=\theta \cdot \rho \\
\theta=\frac{L}{\rho} \cdot \frac{B}{B} \quad \theta=\frac{L B}{B \rho}=\frac{L B}{\frac{p}{q}}
\end{gathered}
$$

Two particles in a dipole field

> What happens with two particles that travel in a dipole field with different initial angles, but with equal initial position and equal momentum?
_— Particle A

- - - - Particle B

\checkmark Assume that Bp is the same for both particles.
\checkmark Lets unfold these circles......

The 2 trajectories unfolded

> The horizontal displacement of particle B with respect to particle A.

$>$ Particle B oscillates around particle $\mathrm{A} \rightarrow$ a dipole magnet bends the particle in the horizontal plane and has a focusing effect proportional to $1 / \rho$ (1/bending radius)
$>$ Strength of the dipole field normalized to the particle momentum/charge:
Remember two slides ago: $L=\theta \cdot \rho$

$$
\frac{B}{p / q}=\frac{1}{\rho}
$$

This type of oscillation forms the basis of all transverse motion in an accelerator.
$>$ It is called Betatron Oscillation

What happens in the vertical plane?

$>$ What can we do to keep the particle inside the vacuum pipe?
$>$ We need something that when the particle deviates from the reference trajectory by an amount y, there is a force applied to the particle proportional to y that brings the particle back on track
$>$ Do you know a force of this kind?

The mechanical equivalent

$>$ The gutter below illustrates how the particles in our accelerator should be focused

[^2]$>$ The force we are looking for is of the type:

$>$ A particle during its transverse motion in our accelerator is characterized by:
$>$ Position or displacement from the central orbit
$>$ Angle with respect to the central orbit

$>$ This is a motion with a linear restoring force $=f$ (position), like the pendulum or spring mass system

Quadrupole fields

Hook's law

$>$ A Quadrupole has 4 poles, 2 north and 2 south
$>$ They are symmetrically arranged around the centre of the magnet
$>$ There is no magnetic field along the central axis

Horizontal focusing quadrupole

$>$ On the x-axis (horizontal) the field is vertical and given by $\mathrm{B}_{\mathrm{y}} \propto \mathrm{x}$
$>$ On the y-axis (vertical) the field is horizontal and given by $B_{x} \propto y$
$>$ Field gradient, \underline{K} :
$\frac{d\left(B_{y}\right)}{d x}$ $\left(T m^{-1}\right)$
$>$ Normalised gradient, k :

Vertical focusing quadrupole

Focusing and Stable motion

$>$ Using a combination of focusing (QF) and defocusing (QD) quadrupoles solves our problem of 'unstable' vertical motion.
$>$ Remember that the focusing strength of a dipole magnet goes with

$$
\frac{B}{p / q}=\frac{1}{\rho} \quad>\text { The bigger the accelerator radius, } \rho, \text { the smaller the strength of }
$$

$>$ So the focusing effect in the horizontal plane works for small radius accelerators, but would it work for LHC?

$$
\rho \approx \frac{26658.9 m}{2 \pi} \cdot 66 \% \approx 2800 m \quad \frac{1}{\rho}=\frac{1}{2800}=0.0004 m^{-1}
$$

$>$ Even for smaller radius accelerators would not work
$>$ COSMOTRON (1949) \& BEVATRON (1954) used weak focusing (strong focusing not yet invented) \rightarrow beam area in BEVATRON $\sim 120 \mathrm{~cm} 2 \rightarrow$ huge vacuum chambers

Beam direction

Focusing and Stable motion

$>$ Quadrupoles will keep the beams focused in both planes when the position in the accelerator, type and strength of the quadrupoles are well chosen
$>$ By now our accelerator is composed of:
> Dipoles, constrain the beam to some closed path (orbit)
$>$ Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions
$>$ A combination of focusing and defocusing sections that is very often used is the so called: FODO lattice
$>$ This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by non-focusing drift spaces

FODO cell

> The FODO cell is defined as follows:

Focusing quadrupole (QF) focuses in horizontal and defocuses in vertical

Circular accelerator with a FODO structure

$\boldsymbol{X}_{\mathrm{E}}=\mathbf{M}_{\mathrm{D} 5} \cdot \mathbf{M}_{\mathrm{Q} 4} \cdot \mathbf{M}_{\mathrm{D} 4} \cdot \mathbf{M}_{\mathrm{Q} 3} \cdot \mathbf{M}_{\mathrm{D} 3} \cdot \mathbf{M}_{\mathrm{Q} 2} \cdot \mathbf{M}_{\mathrm{D} 2} \cdot \mathbf{M}_{\mathrm{Q} 1} \cdot \mathbf{M}_{\mathrm{D} 1} \cdot \boldsymbol{X}_{0} . \quad$ (3.90)

Fig. 3.21 Calculation of particle motion through a structure of multiple beam steering elements.
Fig. 3.31 Example of a circular accelerator employing a FODO structure. The ring consists of a number of identical cells, each consisting of two bending magnets, with quadrupoles arranged with alternating polarity between them.
(by K. Wille)

What do we know by now?

$>$ We know how to guide the particles on a well defined design orbit
$>$ We know how to focus the particles to keep each single particle trajectory with in the vacuum chamber of the accelerator close to the design orbit
$>$ In this way particles are accelerated and stored for several hours (~ 12 hours or more) travelling at about $\mathrm{v} \sim \mathrm{c} \rightarrow \mathrm{L}=10^{10}-10^{11} \mathrm{~km}$ several times the distance Sun-Pluto and back

Diameter ~ 4-5 cm

LHC vacuum pipe Ultra high vacuum: $10^{-10} \mathrm{mbar}$, like at 1000
km over see level
Spanish Language Teacher Programme, R. Alemany Fernandez

At which energy can we accelerate the particles now? Let's take LHC as example

Golden formula (you should know by heart) $\rightarrow \quad B \rho=\frac{p}{q}$
Circumference \Rightarrow FIXED!!! by LEP: $26658.9 \mathrm{~m} \Rightarrow \rho \approx \frac{26658.9 \mathrm{~m}}{2 \pi} \cdot 66 \% \approx 2800 \mathrm{~m}$
Magnetic field in the dipole magnets $=8$ Tesla
~66\% of the lattice
elements are dipoles
We need SUPERCONDUCTING technology!!

$$
p=0.33 \cdot q \cdot B \cdot \rho \approx 0.33 \cdot 8 T \cdot 2780 m \approx(7 \mathrm{TeV})
$$

	Size (m)	Size	Beam energy	Instrument
Aggregate of molecules: cell/bacteria	10^{-5}	10 micro meter	0.1 eV	
	10^{-7}	100 nano meter	10 eV	Optical microscope
Aggregate of atoms: molecules	10^{-9}	1 nano meter	1 keV	Electron microscope
Atoms: nucleus+electrons	10^{-10}	0.1 nano meter	10 keV	Synchrotron radiation
Nucleus (Oxygen: $8 \mathrm{p}+8 \mathrm{n}$)	10^{-14}	0.01 pico meter	$>100 \mathrm{MeV}$	Low energy e- or p+accelerator
Aggregate of quarks: hadrons	10^{-15}	1 femto meter	$>1 \mathrm{GeV}$	High energy p+accelerator
Quarks+leptons	10^{-18}	1 atto meter	$>1 \mathrm{TeV}$	High energy e- or $\mathrm{p}+$ collider

Finally we can observe quarks and leptons!!

Spares

Hill's equation

$>$ These betatron oscillations exist in both horizontal and vertical planes.
$>$ The number of betatron oscillations per turn is called the betatron tune and is defined as Qx and Oy.
$>$ Harmonic oscillator equation of motion:

$$
\left.\begin{array}{ll}
F=m a & \text { Newton's second law } \\
F=-k x \quad \text { Hooke'slaw }
\end{array}\right] \quad \begin{aligned}
& F=m \frac{d v}{d t}=m \frac{d}{d t}\left(\frac{d x}{d t}\right)=m \frac{d^{2} x}{d t^{2}} \\
& \mathrm{~m} \frac{d^{2} x}{d t^{2}}=-\mathrm{kx} \Rightarrow \frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
\end{aligned}
$$

$$
\frac{d^{2} x}{d t^{2}}+K x=0
$$

$>$ If the restoring force, K is constant in ' s ' then this is just a Simple Harmonic Motion.
$>$ In a real accelerator $K=f(s)$, remember the FODO, there are different quadrupole magnets, each can have its own value for the restoring force.
$>$ The equation of motion is in this case

Hill's equation, with K(s):

This is our first circular accelerator $\boldsymbol{>}$ cyclotron
 Not valid for relativistic particles

Equation of motion within the homogeneous magnetic field:
It is the Lorentz force without the electric field:

The particle follows a circular orbit with revolution frequency: $\omega_{z}=\frac{q}{m} B_{z} \quad$ Cyclotron frequency
The RF frequency = cyclotron frequency
The higher the velocity the larger the radius of curvature (provided the mass remains cte) \rightarrow the particle gets more and more "rigid" and the magnetic field, which remains constant, has more and more difficulties to bend the particle.

[^3]$\omega_{z} \neq f($ particle velocity)

This is our first circular accelerator $\boldsymbol{\rightarrow}$ (synchro)cyclotron

> Classical cyclotrons can accelerate protons, deuterons and alpha particles up to 22 MeV per charge.
$>$ At this energies those particles are not relativistic ($\mathrm{v} \sim 0.15 \mathrm{C}$), so the mass \sim cte, so the cyclotron frequency remains cte.

$$
\omega_{z}=\frac{q}{m} B_{z}
$$

$>$ As the energy increases the particles are more and more relativistic and their mass is not cte, it increases:

$$
E=m c^{2}=\gamma m_{0} c^{2}
$$

$>$ Therefore, ω_{z} decreases with increasing m
$>$ If $\omega_{R F}$ is decreased accordingly, higher energies can be reached.
$>$ This is the synchrocyclotron principle

How can we observe such small particles?

Let's ask De Broglie

A particle of mass m and speed v behaves like a wave with wavelength λ :

$$
\lambda=\frac{h}{m v}
$$

How can we observe such small particles?

De Broglie wavelength

$$
\lambda=\frac{h}{m v}
$$

> We just saw that photons are limited in size, what else we can use?
$>$ Good candidates are the microscopic particles itself
> We just learnt they are waves as well
> Its De Broglie wavelength must be small compared to the size of the structure we want to observe

$$
\lambda=\frac{h}{m v}=\frac{h c}{E \beta} \Rightarrow E=\frac{h c}{\lambda \beta}
$$

How can we observe such small particles?

Aggregate of atoms: molecules

Size $=10^{-9} \mathrm{~m} \rightarrow 1$ nano

Electron microscope

This is an accelerator!!

How can we observe such small particles?
Atoms: nucleus+electrons

Synchrotron radiation facility

Size $=10^{-10} \mathrm{~m} \Rightarrow 0.1$ nano

$$
E=\frac{h c}{\lambda \beta} \Rightarrow 10 \mathrm{keV}
$$

[^0]: Spanish Language Teacher Programme, R. Alemany Fernandez

[^1]: Fig. 1.3 General principle of the electrostatic accelerator.

[^2]: Spanish Language Teacher Programme, R. Alemany Fernandez

[^3]: Spanish Language Teacher Programme, R.

