Searches for IceCube-neutrino counterparts to gravitational wave events Aswathi Balagopal V., Raamis Hussain, Zsuzsa Marka, Justin Vandenbroucke, Doga Veske for the IceCube collaboration TeVPA 2022 #### Motivation - Several predictions for the production of neutrinos from binary mergers - Mainly from BNS and BHNS mergers - Processes may vary for high and low energy neutrinos - We search for neutrino events from GW events detected by LIGO-Virgo - Searches done in the high energy (> 1 TeV), low energy (<1 TeV) and extremely low energy (< 5 GeV) regime DeepCore to detect low energy neutrinos High energy neutrinos from the whole detector #### GW searches #### Low-latency searches - Events during the O3 run (56) were followed up in realtime with high energy neutrinos - 1000 sec time window #### Catalog searches - Follow up GW events in O1, O2 (GWTC-1 catalog) and O3 (GWTC-2.1 and GWTC-3 catalogs) runs of LIGO-Virgo - GWTC-1 follow-up with high energy neutrinos published - Newly unblinded: GWTC-2.1 and GWTC-3 events with high energy neutrinos - Newly unblinded: GWTC-1, GWTC-2.1 and GWTC-3 events with low energy neutrinos - 1000 sec (low and high energy) and 2-week time windows (high energy) Astrophys. J. Lett. 898 (2020) L10 Phys. Rev. X 9, 031040 (2019) arXiv:2108.01045 arXiv:2111.03606 #### Neutrino datasets #### High-energy dataset - Energy range: $5x10^5$ GeV to $7x10^7$ GeV in the southern hemisphere and 5×10^3 GeV- 10^5 GeV in the northern hemisphere - Muon neutrinos only - Angular resolution ~ 1 degree #### Low-energy dataset - Energy range: ~8 GeV 3x104 GeV in the whole sky - Neutrinos of all flavour - Median angular resolution ~ 50 degrees #### Localizations - Area of GW probabilities in sky is large - High-energy neutrinos (shown here) have much smaller area in sky - Low-energy neutrinos have similar areas compared to GW areas ### Analysis approaches Test statistic = odds ratio for a common source; includes astrophysical emission priors which uses distance information from the GW Test statistic = likelihood ratio of signal+background hypothesis vs background only hypothesis #### Sensitivity comparison Comparison of differential (and integral) sensitivites of various GW follow-up analyses, with model predictions (selected) # Results #### Results: High Energy Analysis (realtime) - Ran low-latency search on 56 GW events - Most significant event: GW190728 - Neutrino arrived 360 s before the GW merger - Had a reconstructed energy of 601 GeV No counterparts found from other observatories - pre-trial p-values for this event are: p = 0.04 (UML) and p = 0.013 (LLAMA) Sky localization of the most significant event ### Results: High Energy Analysis (catalog search) No significant neutrino emission was seen in GWTC-1, GWTC-2.1 and GWTC-3 | GWT | L | LAMA | UML | | | | | |-----------------|------|------------------|---------|--|-----------------|--|------------------------| | Event | Туре | Area $[deg^2]$ | p-value | $E^2 F \text{ UL}$
[GeVcm ⁻²] | p-value | $E^2 F \text{ UL}$
[GeVcm ⁻²] | $E_{\rm iso}$ UL [erg] | | GW190728_064510 | BBH | 395.5 | 0.0084 | 0.89 | 0.04 | 0.315 | 6.36×10^{53} | | GWTC-3 | | | LI | LAMA | UML | | | | Event | Type | $Area$ $[deg^2]$ | p-value | $E^2 F$ UL [GeVcm ⁻²] | $p ext{-value}$ | $E^2 F$ UL [GeVcm ⁻²] | $E_{\rm iso}$ UL [erg] | | GW200316_215756 | BBH | 410.4 | 0.17 | 0.066 | 0.04 | 0.110 | 5.19×10^{53} | | GW200225_060421 | BBH | 509.0 | 0.0048 | 0.10 | 0.20 | 0.055 | 3.03×10^{53} | Events with lowest pre-trial p-values in UML and LLAMA from GWTC-2.1 and GWTC-3 (out of 80 GW events) # E_{iso} upper limits (high-energy neutrinos) - 90% UL on the isotropic equivalent energy emitted in high-energy neutrinos - Total rest mass energy of the progenitors and total radiated energy of the system is also shown - Grey bands represent the expectation (based on the sensitivities) - \bullet E_{iso} UL on GRB170817A is 4 orders of magnitude lower than that on neutrinos ### Two week follow-up (high-energy neutrinos) - Longer time scale: [-0.1,+14] day time window - \bullet Done for all candidate BNS and NSBH events (at least one compact object with mass < 3 M_{\odot} - Motivated by theroretical predictions - No significant neutrino emission seen | Event | Type | p-value | $E^2 F$ UL [GeVcm ⁻²] | |--------------------|------|---------|-----------------------------------| | GW190425 | BNS | 0.43 | 0.661 | | GW190917_114630 | NSBH | 0.84 | 0.442 | | GW190814 | BBH | 0.59 | 0.309 | | GW191219_163120 | NSBH | 0.67 | 0.347 | | GW200105_162426 | NSBH | 0.47 | 0.382 | | GW200115_042309 | NSBH | 0.68 | 0.078 | | $GW200210_092254$ | NSBH | 0.13 | 0.303 | #### Results: Low Energy Analysis (catalog search) No significant emission was found | GW | Type | Area | p-value | Upper Limit
$(E^2 F$
$(\text{GeV cm}^{-2}))$ | E _{iso} U.L.
(ergs) | Pre-trial σ | |----------|------|--------|-----------------------|--|---------------------------------|--------------------| | GW151226 | BBH | 1039.0 | 7.83×10^{-3} | 3.80 | 3.10×10^{54} | 2.42 | Event with lowest pre-trial p-value (out of 90 GW events) Binomial pre-trial p-value: 0.028 Post-trial binomial p-value: 0.215 # E_{iso} upper limits (low-energy neutrinos) - Upper limits on isotropic equivalent energy emitted in neutrinos of all flavors - Events that lie above the band are those with p-values < 0.1 ## Flux upper limits (high+low-energy neutrinos) - 90 GWs (catalog searches with high and low energy neutrinos) - Upper limits assuming spectral index=2 - GW151226: event with the lowest pre-trial p-value in lowenergy - GW190425: only BNS event with pre-trial p-value < 0.1 - GW170817: first observed BNS event with associated gamma-ray emission ### Summary - We search for neutrino counterparts to GWs in the < 1TeV and > 1 TeV energy regimes - Realtime follow-up of GW events (high-energy neutrinos) - Catalog search events in GWTC-1, GWTC-2 and GWTC-3 detected by LIGO-Virgo (high and low-energy neutrinos) - No significant emission was found - We are preparing for O4 run # Backup ### The UML method - Time window: 1000 s (± 500 s) - Scan over the sky, look for overlap between neutrino and GW events - Spatial prior (w) from healpix skymap of GW events - Maximum best-fit value (TS) recorded for each trial for each GW event Likelihood $$\mathcal{L} = \frac{(n_s + n_b)^N}{N!} e^{-(n_s + n_b)} \prod_{i=1}^N \left(\frac{n_s S_i}{n_s + n_b} + \frac{n_b B_i}{n_s + n_b} \right)$$ Hypothesis testing Test Statistic (TS) = max. $\left\{ 2 \ln \left(\frac{\mathcal{L}_k(n_s, \gamma) \cdot w_k}{\mathcal{L}_k(n_s = 0)} \right) \right\}$ Evaluate at all pixels Spatial prior term ### Background distributions A background TS distribution is built for each GW by scrambling data High energy UML analysis ApJ. Lett. 898 (2020) L10 ### Sensitivity calculation - Inject neutrinos with given flux level - Fraction of trials (pseudo-expts.) with TS value > median of background TS (passing fraction) - Fit χ 2 cdf; PF = 0.9 gives the 90% sensitivity - Calculated for all GW events ApJ. Lett. 898 (2020) L10 #### Effective areas Three datasets with complementary effective areas used for GW follow-up analyses High energy dataset: neutrinos of muon flavour; better effective area in the northern hemisphere - Low energy: neutrinos of all flavours; nearly-uniform effective area in the whole sky - Low energy dataset is more background dominated - ~1°angular error for >1 TeV; median ~10-50°angular error for <1 TeV PoS(ICRC2021)1131 # Catalog details - GWTC-1 for O1, O2 runs: 11 events out of which 1 BNS and 10 BBH - GWTC-2 for O3a run (with FAR as the threshold parameter): 39 events; 1 NSBH and 38 BBH - GWTC-2.1 for O3a run (with p_{astro} as the threshold parameter): 44 events, 3 removed from GWTC-2 (1 NSBH also removed); 1 new NSBH and 43 BBH Links: GWTC-1, GWTC-2, GWTC-2.1 #### Results (low-energy) | GW | Type | Area | p-value | Upper Limit
$(E^2 F$
$(GeV cm^{-2}))$ | E _{iso} U.L.
(ergs) | Pre-trial σ | |------------------------------------|-------------|------------------|--|---|--|--------------------| | GW151226 | BBH | 1039.0 | 7.83×10^{-3} | 3.80 | 3.10×10^{54} | 2.42 | | GW200316_215756 | BBH | 410.4 | 3.79×10^{-2} | 1.71 | 4.47×10^{54} | 1.78 | | GW190426_190642 | BBH | 8214.5 | 4.13×10^{-2} | 2.80 | 3.03×10^{56} | 1.74 | | GW190630_185205 | BBH | 1216.9 | 4.12×10^{-2} | 2.83 | 1.21×10^{55} | 1.74 | | GW190413_052954 | BBH | 1484.5 | 4.23×10^{-2} | 2.05 | 1.62×10^{56} | 1.72 | | GW190910_112807 | BBH | 10880.3 | 3.07×10^{-2} | 3.04 | 3.74×10^{55} | 1.71 | | GW170823 | BBH | 1650.0 | 5.07×10^{-2} | 2.59 | 3.57×10^{55} | 1.65 | | GW191230_180458 | BBH | 1012.2 | 5.47×10^{-2} | 2.94 | 6.79×10^{55} | 1.60 | | GW190930_133541 | BBH | 1679.6 | 5.48×10^{-2} | 1.36 | 6.05×10^{54} | 1.60 | | GW190728_064510 | BBH | 395.5 | 6.72×10^{-2} | 1.98 | 6.83×10^{54} | 1.50 | | GW191216_213338 | BBH | 480.1 | 6.93×10^{-2} | 2.62 | 2.85×10^{53} | 1.48 | | GW190425 | BNS | 9958.2 | 9.08×10^{-2} | 2.49 | 2.82×10^{53} | 1.34 | | GW200129_065458 | BBH | 81.8 | 9.25×10^{-2} | 1.56 | 2.36×10^{54} | 1.33 | | GW200220_061928 | BBH | 3484.7 | 1.03×10^{-1} | 2.26 | 1.16×10^{56} | 1.26 | | GW190731_140936 | BBH | 3387.3 | 1.05×10^{-1} | 2.73 | 1.40×10^{56} | 1.26 | | GW190503_185404 | BBH | 94.4 | 1.24×10^{-1} | 2.44 | 2.26×10^{55} | 1.16 | | GW170818 | BBH | 40.3 | 1.23×10^{-1} | 0.88 | 7.56×10^{54} | 1.16 | | GW190421_213856 | BBH | 1211.5 | 1.26×10^{-1} | 2.40 | 8.32×10^{55} | 1.14 | | GW200225_060421 | BBH | 509.0 | 8.55×10^{-1} | 0.68 | 2.21×10^{54} | 1.05 | | GW200308_173609 | BBH | 18705.7 | 1.49×10^{-1} | 2.38 | 1.61×10^{56} | 1.04 | | GW191103_012549 | BBH | 2519.6 | 1.58×10^{-1} | 1.24 | 2.29×10^{54} | 1.00 | | GW170814 | BBH | 88.1 | 1.83×10^{-1} | 2.07 | 2.41×10^{54} | 0.90 | | GW190925_232845 | BBH | 1233.5 | 1.84×10^{-1} | 1.67 | 6.64×10^{54} | 0.90 | | GW190412 | BBH | 20.9 | 1.91×10^{-1} | 0.70 | 2.89×10^{54} | 0.87 | | GW190521_074359 | BBH | 546.5 | 2.17×10^{-1} | 0.96 | 8.95×10^{54} | 0.78 | | GW190805_211137 | BBH | 3949.1 | 2.53×10^{-1} | 1.59 | 2.78×10^{56} | 0.66 | | GW190517_055101 | BBH | 473.3 | 2.72×10^{-1} | 1.70 | 2.63×10^{55} | 0.61 | | GW200220_124850 | BBH | 3168.9 | 2.77×10^{-1} | 1.46 | 4.13×10^{55} | 0.59 | | GW190514_065416 | BBH | 3009.7 | 2.78×10^{-1} | 0.94 | 1.04×10^{56} | 0.59 | | GW190915_235702 | BBH | 396.9 | 3.05×10^{-1} | 0.59 | 1.30×10^{55} | 0.51 | | GW190916_200658 | BBH | 4499.2 | 3.15×10^{-1} | 1.33 | 1.87×10^{56} | 0.48 | | GW200112_155838 | BBH | 4250.4 | 3.50×10^{-1} | 1.56 | 3.13×10^{54} | 0.39 | | GW190828_063405 | BBH | 520.1 | 3.59×10^{-1} | 1.28 | 2.58×10^{55} | 0.36 | | GW190803_022701 | BBH | 1519.5 | 3.71×10^{-1}
3.84×10^{-1} | 0.79 | 6.62×10^{55} | 0.33 | | GW190917_114630
GW190707_093326 | NSBH
BBH | 2050.6
1346.0 | 3.84×10^{-1}
3.88×10^{-1} | 1.12
1.21 | 4.06×10^{54}
3.45×10^{54} | 0.29 | | GW190403_051519 | BBH | 5589.4 | 4.13×10^{-1} | 0.98 | 2.40×10^{56} | 0.28 | | GW190405_051519
GW191126_115259 | BBH | 1514.5 | 4.13×10^{-1}
4.61×10^{-1} | 0.98 | 3.36×10^{54} | 0.23 | | GW200322_091133 | BBH | 31571.1 | 5.15×10^{-1} | 0.95 | 7.44×10^{55} | - 0.09 | | GW191113_071753 | BBH | 2993.3 | 8.15×10^{-1} | 1.38 | 4.67×10^{54} | - | | GW191113-071733
GW191215-223052 | BBH | 595.8 | 8.48×10^{-1} | 1.37 | 6.73×10^{54} | - | | GW190602_175927 | BBH | 694.5 | 8.52×10^{-1} | 1.65 | 5.28×10^{55} | - | | GW200105_162426 | NSBH | 7881.8 | 8.55×10^{-1} | 0.77 | 9.05×10^{52} | _ | | GW190521 | BBH | 1008.2 | 8.65×10^{-1} | 1.48 | 7.27×10^{54} | - | | GW200306_093714 | BBH | 4371.2 | 8.66×10^{-1} | 0.68 | 7.08×10^{54} | - | | GW191127_050227 | BBH | 1499.2 | 8.69×10^{-1} | 0.86 | 2.31×10^{55} | _ | | GW190620_030421 | BBH | 7202.1 | 8.71×10^{-1} | 0.91 | 6.16×10^{55} | - | | GW200209_085452 | BBH | 924.5 | 8.73×10^{-1} | 0.78 | 2.03×10^{55} | - | | GW200210_092254 | NSBH | 1830.7 | 8.74×10^{-1} | 1.21 | 1.65×10^{54} | - | | GW150914 | BBH | 184.6 | 8.79×10^{-1} | 1.80 | 1.13×10^{54} | - | | GW190519_153544 | BBH | 857.1 | 8.78×10^{-1} | 0.88 | 3.39×10^{55} | - | | GW190706_222641 | BBH | 653.8 | 8.78×10^{-1} | 0.72 | 1.27×10^{56} | - | | | | | | | | 1 | #### IceCube paper in preparation | GW190814 | BBH | 19.3 | 8.87×10^{-1} | 1.4 | 2.49×10^{53} | - | |-----------------|------|---------|-----------------------|------|-----------------------|---| | GW190719_215514 | BBH | 2890.1 | 8.88×10^{-1} | 0.81 | 6.98×10^{55} | - | | GW190408_181802 | BBH | 148.8 | 8.91×10^{-1} | 0.59 | 1.10×10^{55} | - | | GW200115_042309 | NSBH | 511.9 | 8.92×10^{-1} | 1.28 | 1.23×10^{53} | - | | GW200219_094415 | BBH | 702.1 | 8.97×10^{-1} | 1.38 | 2.41×10^{55} | - | | GW190727_060333 | BBH | 833.8 | 8.98×10^{-1} | 1.33 | 5.96×10^{55} | - | | GW190720_000836 | BBH | 463.4 | 9.02×10^{-1} | 1.15 | 6.58×10^{54} | - | | GW190708-232457 | BBH | 13675.4 | 9.04×10^{-1} | 0.72 | 3.95×10^{54} | - | | GW170817 | BNS | 31.9 | 9.07×10^{-1} | 1.48 | 7.07×10^{51} | - | | GW170729 | BBH | 1032.3 | 9.08×10^{-1} | 1.58 | 5.15×10^{55} | - | | GW190513_205428 | BBH | 518.4 | 9.10×10^{-1} | 0.54 | 1.56×10^{55} | - | | GW200208_130117 | BBH | 38.0 | 9.10×10^{-1} | 1.55 | 8.78×10^{54} | - | | GW190701_203306 | BBH | 46.1 | 9.11×10^{-1} | 1.20 | 2.05×10^{55} | - | | GW190725_174728 | BBH | 2292.5 | 9.13×10^{-1} | 1.07 | 6.65×10^{54} | - | | GW190828_065509 | BBH | 664.0 | 9.15×10^{-1} | 1.50 | 1.50×10^{55} | - | | GW151012 | BBH | 1554.3 | 9.17×10^{-1} | 0.65 | 4.30×10^{54} | - | | GW200128_022011 | BBH | 2677.5 | 9.17×10^{-1} | 1.06 | 1.58×10^{55} | - | | GW200224_222234 | BBH | 49.9 | 9.19×10^{-1} | 1.29 | 4.92×10^{54} | - | | GW170809 | BBH | 340.7 | 9.26×10^{-1} | 1.51 | 4.78×10^{54} | - | | GW191204_171526 | BBH | 344.9 | 9.28×10^{-1} | 1.24 | 5.62×10^{53} | - | | GW190924_021846 | BBH | 357.9 | 9.29×10^{-1} | 0.80 | 1.43×10^{54} | - | | GW170104 | BBH | 935.8 | 9.34×10^{-1} | 0.65 | 4.31×10^{54} | - | | GW190527_092055 | BBH | 3662.4 | 9.34×10^{-1} | 1.08 | 3.33×10^{55} | - | | GW191129_134029 | BBH | 848.3 | 9.36×10^{-1} | 1.16 | 9.4×10^{53} | - | | GW191105_143521 | BBH | 728.7 | 9.38×10^{-1} | 1.16 | 1.89×10^{54} | - | | GW200202_154313 | BBH | 159.3 | 9.38×10^{-1} | 0.25 | 2.63×10^{53} | - | | GW200208_222617 | BBH | 1889.2 | 9.43×10^{-1} | 0.78 | 3.93×10^{55} | - | | GW190926_050336 | BBH | 2505.9 | 9.44×10^{-1} | 1.12 | 1.27×10^{56} | - | | GW200311_115853 | BBH | 35.6 | 9.44×10^{-1} | 1.25 | 2.17×10^{54} | - | | GW191219_163120 | NSBH | 2232.1 | 9.53×10^{-1} | 0.96 | 4.60×10^{53} | - | | GW190413_134308 | BBH | 730.6 | 9.54×10^{-1} | 1.21 | 1.23×10^{56} | - | | GW190512_180714 | BBH | 218.0 | 9.56×10^{-1} | 1.27 | 1.40×10^{55} | - | | GW200302_015811 | BBH | 7010.8 | 9.58×10^{-1} | 1.04 | 3.69×10^{54} | - | | GW191109_010717 | BBH | 1784.3 | 9.63×10^{-1} | 1.28 | 2.66×10^{54} | - | | GW190929_012149 | BBH | 2219.3 | 9.66×10^{-1} | 0.83 | 8.66×10^{55} | - | | GW191204_110529 | BBH | 4747.7 | 9.85×10^{-1} | 0.84 | 6.52×10^{54} | - | | GW200216_220804 | BBH | 3009.5 | 9.86×10^{-1} | 0.52 | 2.46×10^{55} | - | | GW170608 | BBH | 538.8 | 1.0 | 0.58 | 5.08×10^{53} | - | | | | | | | | | #### Results (high-energy) | 110 (11 g) 1 g 11 g 1 g 1 g | | | | | | | | | | |--|-------------------|-----------|---------|-----------------------|---------|-----------------------|---------------------------|--|--| | GWTC-2.1 | | | L | LAMA | UML | | | | | | Event | Type | Area | p-value | E^2F UL | p-value | E^2F UL | E _{iso} UL [erg] | | | | Event | 1 ype | $[deg^2]$ | p-value | $[\text{GeVcm}^{-2}]$ | p-value | $[\text{GeVcm}^{-2}]$ | , | | | | GW190403_051519 | BBH | 5589.4 | 0.51 | 0.14 | 0.46 | 0.101 | 1.86×10^{55} | | | | GW190408_181802 | BBH | 148.8 | 0.22 | 0.048 | 0.17 | 0.0512 | 4.85×10^{53} | | | | GW190412 | BBH | 20.9 | 0.27 | 0.041 | 0.13 | 0.0459 | 8.31×10^{52} | | | | GW190413_052954 | BBH | 1484.5 | 0.30 | 0.087 | 0.28 | 0.133 | 7.01×10^{54} | | | | GW190413_134308 | BBH | 730.6 | 0.27 | 0.34 | 0.34 | 0.270 | 2.84×10^{55} | | | | GW190421_213856 | BBH | 1211.5 | 0.81 | 0.46 | 0.56 | 0.393 | 1.40×10^{55} | | | | GW190425 | BNS | 9958.2 | 0.16 | 0.22 | 0.94 | 0.176 | 1.66×10^{52} | | | | GW190426_190642 | BBH | 8214.5 | 0.42 | 0.17 | 0.18 | 0.282 | 1.25×10^{55} | | | | GW190503_185404 | BBH | 94.4 | 0.94 | 0.54 | 0.34 | 0.584 | 4.99×10^{54} | | | | GW190512_180714 | BBH | 218.0 | 0.81 | 0.23 | 0.85 | 0.199 | 1.74×10^{54} | | | | GW190513_205428 | BBH | 518.4 | 0.99 | 0.043 | 0.94 | 0.0514 | 6.73×10^{53} | | | | GW190514_065416 | BBH | 3009.7 | 0.25 | 0.089 | 0.44 | 0.0453 | 3.96×10^{54} | | | | GW190517_055101 | BBH | 473.3 | 0.21 | 0.48 | 0.26 | 0.366 | 6.05×10^{54} | | | | GW190519_153544 | BBH | 857.1 | 0.067 | 0.15 | 0.21 | 0.0914 | 3.20×10^{54} | | | | GW190521 | BBH | 1008.2 | 0.62 | 0.37 | 0.63 | 0.359 | 1.90×10^{55} | | | | GW190521_074359 | BBH | 546.5 | 0.11 | 0.049 | 0.15 | 0.0451 | 2.36×10^{53} | | | | GW190527_092055 | BBH | 3662.4 | 0.65 | 0.41 | 0.88 | 0.326 | 1.01×10^{55} | | | | GW190602_175927 | BBH | 694.5 | 0.31 | 0.34 | 0.17 | 0.370 | 9.73×10^{54} | | | | GW190620_030421 | BBH | 7202.1 | 0.20 | 0.36 | 0.23 | 0.121 | 4.13×10^{54} | | | | GW190630_185205 | BBH | 1216.9 | 0.64 | 0.15 | 0.81 | 0.427 | 5.31×10^{53} | | | | GW190701_203306 | BBH | 46.1 | 1.0 | 0.039 | 0.87 | 0.0385 | 7.65×10^{53} | | | | GW190706_222641 | BBH | 653.8 | 0.99 | 0.036 | 0.92 | 0.0356 | 3.17×10^{54} | | | | GW190707_093326 | $_{\mathrm{BBH}}$ | 1346. | 0.43 | 0.24 | 0.63 | 0.202 | 4.74×10^{53} | | | | GW190708_232457 | BBH | 13675.4 | 0.11 | 0.11 | 0.56 | 0.0720 | 1.62×10^{53} | | | | GW190719_215514 | $_{\mathrm{BBH}}$ | 2890.1 | 0.83 | 0.054 | 0.91 | 0.0512 | 4.90×10^{54} | | | | GW190720_000836 | BBH | 463.4 | 0.99 | 0.13 | 0.94 | 0.0872 | 5.34×10^{53} | | | | GW190725_174728 | BBH | 2292.5 | 0.048 | 0.19 | 0.59 | 0.0918 | 4.04×10^{53} | | | | GW190727_060333 | BBH | 833.8 | 0.89 | 0.38 | 0.74 | 0.324 | 1.53×10^{55} | | | | GW190728_064510 | BBH | 395.5 | 0.0084 | 0.89 | 0.04 | 0.315 | 6.36×10^{53} | | | | GW190731_140936 | BBH | 3387.3 | 0.25 | 0.93 | 0.61 | 0.385 | 1.81×10^{55} | | | | GW190803_022701 | BBH | 1519.5 | 0.31 | 0.037 | 0.64 | 0.0354 | 1.69×10^{54} | | | | GW190805_211137 | BBH | 3949.1 | 0.74 | 0.20 | 0.93 | 0.180 | 2.56×10^{55} | | | | GW190814 | BBH* | 19.3 | 1.0 | 0.24 | 1.0 | 0.259 | 5.68×10^{52} | | | | GW190828_063405 | BBH | 520.1 | 0.93 | 0.21 | 0.98 | 0.178 | 2.74×10^{54} | | | | GW190828_065509 | $_{\mathrm{BBH}}$ | 664.0 | 0.84 | 0.38 | 0.84 | 0.368 | 3.73×10^{54} | | | | GW190910_112807 | BBH | 10880.3 | 0.22 | 0.45 | 0.77 | 0.177 | 1.90×10^{54} | | | | GW190915_235702 | BBH | 396.9 | 0.56 | 0.036 | 0.44 | 0.0354 | 3.61×10^{53} | | | | GW190916_200658 | BBH | 4499.2 | 0.52 | 0.16 | 0.85 | 0.108 | 1.22×10^{55} | | | | GW190917_114630 | NSBH* | 2050.6 | 0.20 | 0.19 | 0.72 | 0.203 | 6.37×10^{53} | | | | GW190924_021846 | BBH | 357.9 | 0.031 | 0.037 | 0.23 | 0.0346 | 4.46×10^{52} | | | | GW190925_232845 | BBH | 1233.5 | 0.39 | 0.11 | 0.59 | 0.0908 | 3.41×10^{53} | | | | GW190926_050336 | BBH | 2505.9 | 0.13 | 0.78 | 0.33 | 0.280 | 2.30×10^{55} | | | | GW190929_012149 | BBH | 2219.3 | 0.11 | 0.34 | 0.22 | 0.276 | 1.85×10^{55} | | | | GW190930_133541 | BBH | 1679.6 | 0.14 | 0.038 | 0.31 | 0.0427 | 1.05×10^{53} | | | #### IceCube paper in preparation | GWTC-3 | | | L | LAMA | | UML | | | |-----------------|-------------------|-----------|---------|-----------------------|---------|-----------------------|------------------------|--| | Event | Туре | Area | p-value | E^2F UL | p-value | E^2F UL | $E_{\rm iso}$ UL [erg] | | | Livene | турс | $[deg^2]$ | p-varue | $[\text{GeVcm}^{-2}]$ | p-varae | $[\text{GeVcm}^{-2}]$ | | | | GW191103_012549 | $_{\mathrm{BBH}}$ | 2519.6 | 0.53 | 0.049 | 0.71 | 0.049 | 1.96×10^{53} | | | GW191105_143521 | BBH | 728.7 | 0.27 | 0.28 | 0.54 | 0.267 | 1.28×10^{54} | | | GW191109_010717 | BBH | 1784.3 | 0.14 | 0.48 | 0.05 | 0.508 | 5.03×10^{54} | | | GW191113_071753 | $_{\mathrm{BBH}}$ | 2993.3 | 0.076 | 0.52 | 0.19 | 0.441 | 3.12×10^{54} | | | GW191126_115259 | BBH | 1514.5 | 0.77 | 0.13 | 1.00 | 0.138 | 1.42×10^{54} | | | GW191127_050227 | $_{\mathrm{BBH}}$ | 1499.2 | 0.38 | 0.078 | 0.83 | 0.081 | 2.96×10^{54} | | | GW191129_134029 | BBH | 848.3 | 0.25 | 0.35 | 0.30 | 0.425 | 8.95×10^{53} | | | GW191204_110529 | BBH | 4747.7 | 0.16 | 0.36 | 0.49 | 0.085 | 1.46×10^{54} | | | GW191204_171526 | BBH | 344.9 | 0.97 | 0.26 | 1.00 | 0.280 | 3.96×10^{53} | | | GW191215_223052 | BBH | 595.8 | 0.98 | 0.26 | 1.00 | 0.211 | 2.98×10^{54} | | | GW191216_213338 | BBH | 480.1 | 0.0049 | 0.093 | 0.10 | 0.071 | 2.57×10^{52} | | | GW191219_163120 | NSBH | 2232.1 | 0.09 | 0.26 | 0.71 | 0.219 | 2.80×10^{53} | | | GW191222_033537 | $_{\mathrm{BBH}}$ | 2299.2 | 0.95 | 0.36 | 1.00 | 0.375 | 1.1×10^{55} | | | GW191230_180458 | BBH | 1012.2 | 0.37 | 0.36 | 0.28 | 0.488 | 3.18×10^{55} | | | GW200105_162426 | NSBH | 7881.8 | 0.20 | 0.13 | 0.81 | 0.095 | 2.98×10^{52} | | | GW200112_155838 | $_{\mathrm{BBH}}$ | 4250.4 | 0.58 | 0.18 | 0.79 | 0.133 | 8.43×10^{53} | | | GW200115_042309 | NSBH | 511.9 | 0.34 | 0.038 | 0.45 | 0.045 | 2.12×10^{52} | | | GW200128_022011 | BBH | 2677.5 | 0.46 | 0.25 | 0.47 | 0.243 | 9.31×10^{54} | | | GW200129_065458 | BBH | 81.8 | 0.033 | 0.041 | 0.05 | 0.406 | 1.73×10^{53} | | | GW200202_154313 | BBH | 159.3 | 0.0057 | 0.039 | 0.06 | 0.038 | 2.43×10^{52} | | | GW200208_130117 | BBH | 38.0 | 0.94 | 0.33 | 1.00 | 0.518 | 9.25×10^{54} | | | GW200208_222617 | BBH | 1889.2 | 0.41 | 0.045 | 0.90 | 0.043 | 4.98×10^{54} | | | GW200209_085452 | BBH | 924.5 | 0.84 | 0.50 | 1.00 | 0.041 | 1.81×10^{54} | | | GW200210_092254 | $_{\mathrm{BBH}}$ | 1830.7 | 0.28 | 0.071 | 0.79 | 0.081 | 2.51×10^{53} | | | GW200216_220804 | $_{\mathrm{BBH}}$ | 3009.5 | 0.065 | 0.066 | 0.46 | 0.236 | 2.82×10^{54} | | | GW200219_094415 | BBH | 702.1 | 0.98 | 0.23 | 1.00 | 0.035 | 9.57×10^{54} | | | GW200220_061928 | BBH | 3484.7 | 0.23 | 0.22 | 0.05 | 0.357 | 4.23×10^{55} | | | GW200220_124850 | $_{\mathrm{BBH}}$ | 3168.9 | 0.42 | 0.13 | 0.53 | 0.118 | 6.31×10^{54} | | | GW200224_222234 | BBH | 49.9 | 0.90 | 0.068 | 1.00 | 0.079 | 9.33×10^{53} | | | GW200225_060421 | $_{\mathrm{BBH}}$ | 509.0 | 0.0048 | 0.10 | 0.20 | 0.055 | 3.03×10^{53} | | | GW200302_015811 | $_{\mathrm{BBH}}$ | 7010.8 | 0.16 | 0.67 | 0.21 | 0.531 | 4.34×10^{54} | | | GW200306_093714 | $_{\mathrm{BBH}}$ | 4371.2 | 0.15 | 0.074 | 0.57 | 0.046 | 9.99×10^{53} | | | GW200308_173609 | BBH | 18705.7 | 0.24 | 0.38 | 0.29 | 0.326 | 7.18×10^{55} | | | GW200311_115853 | $_{\mathrm{BBH}}$ | 35.6 | 1.0 | 0.047 | 1.00 | 0.076 | 4.38×10^{53} | | | GW200316_215756 | BBH | 410.4 | 0.17 | 0.066 | 0.04 | 0.110 | 5.19×10^{53} | | | GW200322_091133 | BBH | 31571.1 | 0.23 | 0.18 | 0.87 | 0.148 | 4.39×10^{55} | |