MEASUREMENT OF THE ASTROPHYSICAL DIFFUSE FLUX USING MUON NEUTRINOS WITH A CONTAINED VERTEX

WISCONSIN

for the IceCube Collaboration TeVPa - Kingston, On - August 10, 2022

Albrecht Karle, Sarah Mancina and Manuel Silva*

REMINDER: DIFFUSE FLUX

- Energy density of gamma rays, neutrinos, and ultra-high energy cosmic rays are comparable
- Astrophysical diffuse neutrino flux measured using:
 - "Tracks" (V_{μ})
 - Starting "cascades" $(V_e + V_T)$
- Lingering question:

Φ [GeVs⁻¹ sr Х E^2

 $^{-1} \, \text{cm}^{-2}$]

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

Is diffuse neutrino flux more complex than an isotropic single power law?

ICECUBE NEUTRINO OBSERVATORY

- IceCube neutrino observatory located at geographic South Pole
- Neutrinos interact within the ice, secondary particles from interaction produce Cherenkov radiation
- First detection of high energy astrophysical neutrinos in 2013. Science 342, 1242856 (2013)

Manuel Silva - TeVPa 2022 - Kingston, On

Starting Cascades Up-going Tracks

Advantage: Energy resolution ~10%, high astrophysical purity, sensitive to astrophysical flux in southern sky Disadvantages: Poor angular resolution, complex atmospheric neutrino flux August 10, 2022 Manuel Silv

Advantage: Large number of events, angular resolution 0.25° at I PeV, high muon neutrino purity Disadvantages: Poor energy resolution, only sensitive to astrophysical flux above ~40 TeV

Manuel Silva - TeVPa 2022 - Kingston, On

Advantages:

- Excellent angular resolution
- Excellent energy resolution
- Most sensitive to southern sky neutrino flux
- High purity (>99%)

Disadvantages:

- Systematic uncertainties require precise modeling over the entire sky
- 3kHz muon background

ATMOSPHERIC MUONVETO - CUT #1

Muon reconstructed track direction and vertex used to define our "veto region"

Veto region is event-to-event dependent

STARTING TRACKS BDT - CUT #2 Cut on BDT score defined such that atmospheric muon background reduced to ~handful of muons per year Use 334 days of data to validate performance of BDT scores

RECONSTRUCTED EVENT OBSERVABLES

- Energy resolution ~25%
- Energy resolution limited by: muon track length, overlap of cascade and muon energy losses in the detector

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

 Directional resolution is ~1.6° at I TeV down to ~0.5° at I PeV

MEASUREMENT OF THE DIFFUSE FLUX

Parameter	Flux
\$ astro	-
γ astro	_
ф _{сопv}	Gaisser H4a
ф _{рr}	Gaisser H4a
Self-Veto Threshold	IOO GeV
\$ muon	Gaisser H4a

$$\mathscr{L}(\lambda(\vec{\Theta}), x) = \prod_{i=1}^{190} \frac{e^{-\lambda_i(\vec{\Theta})}\lambda_i(\vec{\Theta})^{x_i}}{x_i!} \times \prod_{j=1}^{6} \mathscr{G}_j(\hat{\Theta}_j, \Theta_j, \sigma_j)$$

18 bins from I TeV to IPeV, I from I - 10 PeV 10 bins from -1 to 1 cosine zenith

August 10, 2022

- Atmospheric muon and neutrino fluxes pre-defined
 - Fit to overall normalization
- II theory and detector systematics included in fit to data (details in backup)
- Astrophysical flux assumes single power law, assuming 1:1:1 flavor ratio
 - Astrophysical normalization quoted today is per flavor

 $\Phi_{\text{astro}}^{\nu+\bar{\nu},\text{all flavors}} = \phi_{\text{astro}} \times (\frac{\mathsf{E}}{100\text{TeV}})^{-\gamma} \times 3 \times 10^{-18} \text{GeV}^{-1} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2}$

NEW RESULTS: SINGLE POWER LAW

Single power law flux

 $\Phi_{
m astro}({
m E})/C_0 = \phi_{
m astro} \cdot ({
m E}/100{
m TeV})^{-\gamma}$

$$\Phi_{\text{astro}} = 1.68^{+0.19}_{-0.22}$$
$$\gamma_{\text{astro}} = 2.57^{+0.09}_{-0.09}$$

New IceCube result using 10.3 years of data!

NEW RESULTS: ICECUBE FLUX SUMMARY

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

- This is the first event selection dominated by muon neutrinos in the southern equatorial sky
- Within 68% confidence intervals, all single power law flux measurements are in agreement

NEW RESULTS: RECONSTRUCTED OBSERVABLES

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

NEW RESULTS: RECONSTRUCTED OBSERVABLES

Manuel Silva - TeVPa 2022 - Kingston, On

NEW RESULTS: PIECE-WISE POWER LAW

Piece-wise power law flux ($\gamma = 2$)

 $\Phi_{
m astro}({
m E})/C_0 = \Sigma_{n=0}^8 \phi_{
m astro,n} \cdot ({
m E_n}/100{
m TeV})^{-\gamma}$

- Darker shaded region shows our 90% in 10-7 sensitivity to the astrophysical flux (3TeV-530TeV)
- All pieces consistent with a SPL flux hypothesis

SUMMARY

- A new dataset searching for starting track events in IceCube
 - ~Ilk starting tracks observed
- Measurement of the astro diffuse flux
 - $\phi_{astro} = 1.68, \gamma_{astro} = 2.57$
- 90% sensitivity to astro flux 3-550TeV Unfolded flux from I TeV-10 PeV
 - All pieces were compatible with single power law flux hypothesis

NEXT STEPS FOR **NEW STARTING TRACKS DATASET**

Diffuse flux measurement

- I. Broken power law
- 2. Log-parabolic power law
- 3. Power law with a cut-off
- 4. Simultaneous northern and southern hemisphere single power law fit
- 5. Simultaneous isotropic single power law and diffuse galactic plane component

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

Search for neutrino sources

(Sarah Mancina at 4:10pm today!)

- I. All-sky neutrino clustering
- 2. Catalog and stacking sources
- 3. Neutrinos from diffuse galactic plane

BACKUP

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

Parameter

Optical Module Overall Efficiency

Photon Absorption in Ice

Photon Scattering in Ice

Optical Module Angular Efficiency p₀

Optical Module Angular Efficiency p₁

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

DETECTOR SYSTEMATICS

- Treat each nuisance parameter listed here as Gaussian uncertainty
 - Assume no correlation between systematics
- Detector and ice systematics use full simulation to compute the detector response

OPTICAL MODULE EFFICIENCY

 Overall efficiency as a function of zenith for neutrino energies above 10 TeV

August 10, 2022

 Angular efficiency as a function of zenith for neutrino energies above 10 TeV

THEORY SYSTEMATICS

Parameter

Atmospheric Muon Flux

Atmospheric Neutrino Flux

Cosmic Ray Flux

Hadronic Interaction Model

Self-Veto Threshold

Nu-Nubar Ratio

- Atmospheric muon and neutrino fluxes overall normalization are fit parameters
- CR, HI, SV uncertainties are defined in following slides (new diffuse flux measurement systematics!)
- Nu-Nubar ratio is defined as $R = (\frac{2\nu}{\nu + \bar{\nu}})$
 - Modeled as Gaussian with mean at 1.0 standard deviation of 0.10

COSMIC RAY FLUX UNCERTAINTY

- Brute force MCEq calculation used to compute neutrino fluxes over various CR flux models
- CR flux uncertainty is defined as difference between H4a ($\varepsilon_{CR} = 0$) and GST-3gen ($\varepsilon_{CR} =$ -1). Fit to data prefers $\varepsilon_{CR} = -1.6$.
- Fit to data was rerun with various combinations of CR flux models, change to SPL best-fit was negligible.

HADRONIC MODEL UNCERTAINTY

- Brute force MCEq calculation used to compute neutrino fluxes over various hadronic interaction models
- HI model uncertainty is defined as difference between 2.3c ($\epsilon_{HI} = 0$) and DPMJey ($\varepsilon_{HI} = -1$). Fit to data prefers $\varepsilon_{HI} =$ -0.4.

Manuel Silva - TeVPa 2022 - Kingston, On

August 10, 2022

SELF-VETO UNCERTAINTY

 In southern sky, event selection is capable of identifying and removing atmospheric neutrinos with an accompanying muon

 "Correction" to atmospheric neutrino flux is analytic calculation depending on the rejection probabilities of muons (eg step function at muon energy = I GeV)

 Threshold is free parameter in fit to data. Fit to data prefers $\varepsilon_{SV} = 120$ GeV.

MEASUREMENTS USING TEV ENERGY STARTING EVENTS

Starting Tracks 10 year

	$\theta < 80^{\circ}$	All Sky
Astro	298	680
Atmo conv	980	10042
Total v	1278	10722

August 10, 2022

Manuel Silva - TeVPa 2022 - Kingston, On

Starting Cascades 6 year

	All sky
Astro	566
Atmos conv	3752
Total v	4318

STARTING TRACKS - 2019

- Dedicated IceCube search for starting tracks observed 2650 tracks in 5 years of data.
- Very aggressive cuts at zenith > 0.2 reduce most lceCube sensitivity to astrophysical flux measurement (red line)

