Where are hadronic PeVatrons? - Constraints and Prospects

<u>Takahiro Sudoh</u> <u>Ohio State University, JSPS Overseas Fellow</u> In collaboration with: John F. Beacom (OSU)

Hadronic PeVatrons in the Milky Way

- PeV hadrons from the Milky Way's sources
- Many source classes seem to accelerate GeV - TeV hadrons
- Mysterious: which ones can reach PeV energies ("PeVatrons")

Gamma-ray sources beyond 100 TeV

- Hadronic PeVatrons produce ~ 100 TeV gamma rays
- Tibet ASγ, HAWC, and LHAASO observe sources at such high energies!
- Promising candidates for hadronic PeVatrons

Neutrino sources at TeV - PeV energies

- Hadronic PeVatrons produce ~ 100 TeV neutrinos
- Non detection of Milky Way's sources
- Where are hadronic PeVatrons?

Connection between CR - gamma - nu?

 Bright diffuse hadronic cosmic rays (CR) beyond 1 PeV

 Gamma-ray sources above 100 TeV (but no neutrino sources!)

Connection between CR - gamma - nu?

 Bright diffuse hadronic cosmic rays (CR) beyond 1 PeV

 Gamma-ray sources above 100 TeV (but no neutrino sources!)

Understanding High-Energy Multi-Messengers

Understanding multi messengers

- Goal: Consistent understanding of
 - Hadronic diffuse CR flux
 - Gamma-ray sources (+ diffuse flux)
 - Neutrino non-detection (+ diffuse flux)

• Observed hadronic CR flux : $E_{\mathrm{CR}}^2\Phi_{\mathrm{CR}}$

• Observed hadronic CR flux : $E_{\mathrm{CR}}^2\Phi_{\mathrm{CR}}$

Boron to Carbon data

• Observed hadronic CR flux : $E_{\mathrm{CR}}^2\Phi_{\mathrm{CR}}$

 ullet Energy-dependent CR luminosity [erg/s] : $L_{
m CR}$

• Observed hadronic CR flux : $E_{\mathrm{CR}}^2\Phi_{\mathrm{CR}}$

 ullet Energy-dependent CR luminosity [erg/s] : $L_{
m CR}$

• Observed hadronic CR flux : $E_{\mathrm{CR}}^2\Phi_{\mathrm{CR}}$

 ullet Energy-dependent CR luminosity [erg/s] : $L_{
m CR}$

• Energy-dependent CR energy per source [erg] : $\mathscr{E}_{\text{CR}} = \frac{\mathcal{L}_{\text{CR}}}{\Gamma_{\text{CR}}}$

• CR energy per source $\mathscr{E}_{\operatorname{CR}}$: Calculated from the CR data (previous slide).

- CR energy per source $\mathcal{E}_{\rm CR}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources:

- CR energy per source $\mathcal{E}_{\rm CR}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources:
 - Luminosities : $\mathcal{E}_{\text{CR}}/ au_{pp}$

- CR energy per source $\mathcal{E}_{\mathrm{CR}}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources:
 - Luminosities : $\mathcal{E}_{\text{CR}}/ au_{pp}$
 - $\tau_{pp} \sim (n_{\rm gas}\sigma_{pp}c)^{-1}$: energy-loss time to pp collisions

- CR energy per source $\mathcal{E}_{\rm CR}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources:
 - Luminosities : $\mathcal{E}_{\mathrm{CR}}/\tau_{pp}$ Gas density around/in the source
 - $\tau_{pp} \sim (n_{\rm gas} \sigma_{pp} c)^{-1}$: energy-loss time to pp collisions

- CR energy per source $\mathcal{E}_{\rm CR}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources:
 - Luminosities : $\mathcal{E}_{\mathrm{CR}}/\tau_{pp}$ Gas density around/in the source
 - $\tau_{pp} \sim (n_{\rm gas} \sigma_{pp} c)^{-1}$: energy-loss time to pp collisions
 - Duration of emission : $au_{
 m src}$

- CR energy per source $\mathcal{E}_{\rm CR}$: Calculated from the CR data (previous slide).
- Properties as gamma-ray and neutrino sources:
 - Luminosities : $\mathcal{E}_{\rm CR}/\tau_{pp}$ Gas density around/in the source
 - $\tau_{pp} \sim (n_{\rm gas} \sigma_{pp} c)^{-1}$: energy-loss time to pp collisions
 - Duration of emission : (τ_{src})
 timescale

Population model

- Monte-Carlo simulation to obtain constraints in the n tau plane.
 - Gamma-ray and neutrino spectra, detector properties, source size (10 pc) and spatial distribution (NS birthplace)
 - Assume $\Gamma_{\rm CR}$ = SN rate
- Gamma rays: LHAASO observations of 12 sources above 100 TeV
- Neutrinos: IceCube non-detection after decade of searches
- Reminder: The n tau plane is calibrated to the CR data.
- Aim at consistent understanding of CR + gamma + nu

Main Results

- Can all of LHAASO sources be hadronic?
- Yes!
- Rather high gas densities and confinement time.

- Can all of LHAASO sources be leptonic?
- Yes!
- A wide range of models is consistent with such scenario

 Although no SNRs are established as 100 TeV gamma-ray source yet,

SNRs can still be a viable PeVatron candidate

 More details on LHAASO hadronic fraction

 It is probable that one (or even a few) of them could be hadronic.

Source vs ISM

Can (unresolved)
 sources important for
 diffuse gamma-ray
 emission?

- Yes!
- Compare grammage at the source vs ISM

Neutrino

 Does IceCube nondetection help?

- Yes!
- Rule out regions of high gas densities.

Neutrino

- · Is IceCube enough?
- No!
- Still wide parameter space is open.

Future neutrino

- Is Gen2 promising to observe PeVatrons?
- Yes!
- A wide parameter range is consistent with Gen2 source detection

Future neutrino

- Is Gen2 enough?
- No!
- Non-detection could still allow a wide range of models.

How to improve neutrino sensitivities?

- Improved sensitivities are needed for neutrinos
- Most searches thus far obtain best sensitivities with track-like events
- Source searches with cascade events might be important
 - Lower atmospheric background
 - Sources may have steep spectra
 - Cascade angular resolution in principle can be improved by a lot
- Ocean-based future telescopes are promising

How to improve ne

- Improved sensitivities are needed
- Most searches thus far obtain be
- Source searches with cascade
 - Lower atmospheric backgroun
 - Sources may have steep spect
 - Cascade angular resolution in
- Ocean-based future telescopes

Conclusions

Summary

- We introduced a new population-based approach to consistently understand the data of cosmic rays, gamma rays, and neutrinos
- We quantified the existing constraints on a semi model-independent plane of gas densities and particle confinement time
- LHAASO sources could be all hadronic, but dense gas and strong confinement are needed
- LHAASO sources could be all leptonic, for a wide range of parameters
- IceCube non-detection still allows a large parameter space
- Gen2 is promising to find PeVatrons

Appendix

Introducing "n-tau" plane

- SNR + MC :
 - M_cloud, gas = 1e5 M_sun
 - R_cloud = 20 pc
 - Distance from SNR = 50 pc
 - Diffusion = $1e29 \text{ cm}^2/\text{s}$
- Volume filling ~ (20/50)^3

Introducing "n-tau" plane

- SNR (Dense):
 - RX J1713.7-3946
 - Gas clump ~ 2.5e4 cm^-3
 - Volume filling ~ 0.01
 - Age ~ 1.4 kyr
- Escape time for PeV protons are uncertain, but the lack of > 10 TeV suggest $\tau < 1.4$ kyr.

