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Measuring a rare decay of 40K
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Decays of 40K [1]

▶ 40K: naturally occurring; 0.012% abundance; T1/2 = 1.2× 109 years
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EC

▶ Electron capture (EC): 40
19K + e− → 40

18Ar + νe

▶ ∼ 3 keV X-rays, Auger electrons from K-shell electron capture
▶ Also 1.4 MeV γ (or conversion electron) if EC* to excited state

▶ Direct-to-ground-state EC has never been observed
▶ Nuclear theory: would be only measured 3rd forbidden unique EC
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40K EC decay and direct dark matter searches
▶ ∼ 3 keV from EC/EC* is a BG in energy region expected for

many dark matter models

▶ EC* can be tagged by 1.4 MeV γ, EC can not be tagged:
irreducible BG

▶ K contaminates many NaI experiments (ANAIS, ASTAROTH,
COSINE, COSINUS, SABRE...): draconian measures taken to
grow pure crystals, veto EC*

▶ In particular, EC may constrain interpretations of DAMA dark
matter claim [2] (Pradler et al 2013 [3])

(also requires assumptions on tagging efficiency and other BGs)
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40K EC and geochronology
▶ Longstanding calls to verify existence and intensity of EC [4, 5]:

▶ K-Ar and Ar-Ar dating [6]: as analytical precision improves (resp 0.5%
and 0.1%), EC uncertainty noticeable:

Neglecting EC tends to overestimate ages
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Theoretical predictions for the EC branching ratio
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Measuring EC with KDK [7, 8]: X-ray detector and tagger

▶ EC/EC* trigger small inner detector

▶ ∼ keV threshold for
X-rays/Augers

▶ Transparent to E ≳ 10 keV to
reduce scattering, background

▶ Surround with 4π veto to tag EC*

1.46 MeV γ

▶ For signal-to-noise of 1, need
98% efficiency

▶ 98% absorption efficiency of
1.46 MeV γ requires 22 cm of
NaI (or 77 cm of LAB, or 59 cm
of LAr)

▶ Compare tagged to untagged
triggers to determine ρ, ratio of
EC to EC*.
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Modular Total Absorption Spectrometer (MTAS) tagger [9]

MTAS and insert

MTAS Support Structure

MTAS Outer Layers PMT

MTAS Hexagonal NaI Crystal

SDD Detector/Vacuum Chamber

MTAS Centre PMT

MTAS Plug

SDD HousingTriskel/Cable Support

Cooling Loop

Radioactive 
Source

53.34 cm

▶ ∼ 1 Tonne of NaI at Oak Ridge (now at Argonne)

▶ Surface site, BG rate ∼ 2.8 kHz.
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MTAS and X-ray detector at ORNL

MTAS Vacuum insert with X-ray
detector slides into beam pipe

Material minimized around
source to avoid γ scattering
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X-ray detector
▶ Custom silicon drift detector (SDD) from HLL Munich
▶ Surface area 1 cm2

▶ Electronics from TRIUMF (Constable, Rétière)
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SDD: all energy calibrations
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Calibrating tagging efficiency with 54Mn

Overwhelmingly decays by EC*

54
25Mn29
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24Cr30

99.9997(3) EC∗
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▶ EX = 5.5 keV (also 4–6 keV
Augers), Eγ = 835 keV

▶ Standard-geometry source

Data: ≈ 2 days, ≳ 106 events
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54Mn tagging efficiency calibration and background
Compare number of uncoincident to coincident 54Mn X-rays to obtain efficiency
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Good resolution reveals 55Fe (eg Mn X-rays) contamination in 54Mn (Cr
X-rays) source that must be accounted for in efficiency calculation.
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MTAS 54Mn spectrum (SDD trig, 4 µs CW): data and sims
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Blue: data — Black: pure source sim — Cyan: BG data (measured) — Green: source-BG coincidence

Magenta: source-source coincidence — Red: total sim

Confirms BG coincidence rate
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Determining tagging efficiency for 40K γs [8]

▶ Many additional ingredients for 54Mn 835 keV efficiency:
source-BG pileup, source-source pileup, coincidence window,
conversion electrons, deadtime... → likelihood function

▶ Scale up to 40K 1.4 MeV efficiency with GEANT 4
Monte-Carlos
▶ Simulate ratio of efficiencies at 835 keV and 1.4 MeV
▶ Ratio is insensitive to details of geometry, changes of

threshold, choice of physics list
▶ Results

Coin Win (µs) Energy & Live Time Corrected Efficiency
54Mn 40K 65Zn

1 0.9775 (1) 0.9789 (6) 0.9790 (6)
2 0.9778 (1) 0.9792 (6) 0.9793 (6)
4 0.9778 (1) 0.9792 (6) 0.9793 (6)

Numbers consistent across coinc. windows.

P. Di Stefano for KDK — TeVPA 2022 15 / 31



The source: KCl using 16% enriched 40K/K
▶ Thermally deposited to same geometry as other sources (cm diam disk)
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Al Plates
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W Basket Heater

KCl
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(test source)

▶ 5 µm thick, ∼ 9× 1017 atoms 40K: activity equivalent to
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40K run: Dec 2017 – Feb 2018 — BLINDED

▶ Using thermally deposited
enrKCl source

▶ 33 days of usable data

▶ 40K visible in MTAS and
SDD
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▶ Kα,β from EC* to Ar visible
▶ Ongoing work to understand

▶ Source fluorescence (Cl 2.6 keV,
K 3.3 keV)

▶ Other coincident, uncoincident
BGs
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40K coincident and uncoincident spectra (blind)

ρ = I
I∗ estimated from joint

likelihood fit which also includes:

▶ Respective X-ray emission
probabilities of EC, EC*

▶ γ-tagging efficiencies for
EC*

▶ Spurious coincidences with γ
BG

▶ γ interactions in SDD
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Confirming rate of spurious coincidences using Cl, K fluo
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▶ β− and other mechanisms can
fluoresce Cl, K in source

▶ These fluorescence events can
also be in coincidence with MTAS
BG

▶ Evolution of fluorescence count
rate as a function of coincidence
window is consistent with BG rate
determined independently
(2.8 kHz)

▶ Caveat stats
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Feldman and Cousins [10] expected sensitivity
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Likelihood ratio test: EC BR of 0.2% could be observed at > 5σ
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Complementary approach: KSr2I5:Eu scintillator (KSI)c

▶ Novel scintillator [11], high light
yield ≈ 100 photons/keV,
λ ≈ 450 nm

▶ Density 4.4 g/cm3, total 40K
activity 6.6 Hz/cm3

▶ Available in several cm3

▶ 1” diameter crystals:

▶ Hygroscopic → encapsulate

▶ Excellent energy resolution (137Cs):

cC. Goetz, E. Lukosi, C. Melcher, L. Stand — U. Tennessee
P. Di Stefano for KDK — TeVPA 2022 21 / 31



KSI in MTAS (preliminary)

Setup inserted into
MTAS

▶ 4 g KSI
▶ 7× 7× 20 mm3

▶ Total 40K activity
∼ 6 Hz

▶ 2 PMs

Scintillator spectrum of events coincident
with MTAS
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▶ 3 keV X-rays and Auger electrons visible

▶ Analysis ongoing
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Conclusions and prospects for KDK

▶ Measuring branching ratio of 40K electron capture to 40Ar
ground state will:
▶ provide better understanding of backgrounds in dark matter

searches, and in DAMA claim for discovery
▶ resolve a longstanding question in geochronology
▶ inform nuclear structure and beta decay models

▶ Detector fully characterized: (97.89± 0.06)% tagging
efficiency will allow target sensitivity (NIM A 1012 (2021)
165593)

▶ 40K unblinded, analyzed; publication this summer

▶ Also have 65Zn and 88Y data
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Dark matter, DAMA/LIBRA, and 40K [3, 2]

▶ DAMA: ∼ 250 kg low-background
NaI experiment

▶ Since 1997, DAMA claims
detection based on annual
modulation caused by rotation of
Earth around Sun, through
particle halo of galaxy:

▶

signal︷ ︸︸ ︷
modulation amplitude

time-independent amplitude︸ ︷︷ ︸
signal+ background

≈ 1
100

▶ DAMA controversial:

▶ tension with other experimental
results

▶ disagreement on background
model, eg [12]

▶ Consensus that 3 keV X-rays/Augers
from 40K contribute to low-energy DAMA
spectrum

▶ Contribution may be of the order of the
amplitude of modulation

▶ Pradler et al, PLB 2013 [3]: precise
understanding of 40K necessary to
constrain modulation fraction of signal,
and dark matter interpretation
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40K contribution to DAMA

▶ 2–6 keVee energy range: DAMA observes time-independent component
of ∼ 4 events/d/kg, and modulation component of
∼ 0.05 events/d/kg [13].

▶ DAMA reports 13 ppb contamination of natK based on 3 keV–1.4 MeV
coincidence between detectors and on Monte-Carlo of unknown
efficiency (Sec. 5.3 of [13], and Sec. 5.4 of [2]).

▶ Given natural abundance of 40K and half-life [?], and atomic mass, leads
to a total rate of 40K decays in NaI of 23/d/kg.

▶ 2–6 keVee range: EC and EC* contribute ∼ 7% of these decays as an
Auger electron and ∼ 1% as an X-ray [?]

▶ Since these radiations are all absorbed by DAMA, but EC* are tagged
with an efficiency ϵ, EC* contribute ∼ 1.8(1− ϵ) events/d/kg to the
2-6 keVee range. Assuming a 90% tagging efficiency, EC* contributes
∼ 0.18 events/d/kg.

▶ The contribution of EC is ∼ 0.03 ζ
0.02

events/d/kg to the 2-6 keVee range,
ie of the order of the modulation, ie ∼ 0.03 events/d/kg for EC at the
expected value of ζ. The modulation-to-constant fraction of DAMA
signal interpretation is therefore quite sensitive to EC contribution.

▶ There should also be a contribution from the β− decays of 40K that are
abundant, but spread over 0–1.3 MeV.
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DAMA: effect of EC BG on signal [3]

Figure 1: Solid: assuming some vetoed EC*.

Dashed: no EC* at all. For fixed BR, as K concentration

increases, one squeezes out signal DC, resulting in larger

signal modulation fractions. For fixed K concentration, as

BR increases , one squeezes the signal DC, and increases

signal modulation fraction as well. Signal modulation

must always be ≤ 100% (dark/light red area for

dashed/solid ).

▶ In region of interest, DAMA
observes a ∼ 1% modulation (AC
— signal only) over a constant
level (DC — signal and BG).

▶ Level of BG will squeeze level of
DC signal

▶ This may push signal AC/DC to
values ≥ 20% diffcult to reconcile
with usual halo assumptions.

▶ Assuming 90% tagging of EC*,
BG contribution of EC* relative
to that of EC is 5× 0.2%/BR [3].

▶ Also depends on level of other
BGs
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APD vs SDD: 55Fe calibration

APD SDD

Resolution improved by factor 5, can now resolve Kα and Kβ.
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