

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

The formation of y-ray halos around SNRs through particle escape

Robert Brose, M. Pohl, I. Sushch TeVPa, 8-12 August 2022

CRs from SNRs Observational overview

Evolution of particle acceleration in the shell-type SNRs

More and more observational constrains:

Models need to account for spectral evolution and morphology

Figure: Gamma-ray flux from various SNRs (Funk, TeVPa 2011)

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

Figures: (Top) Excess-count map of RX J1713.7-3946

(Left) Gamma-ray and X-ray profiles of RX J1713.7-3946 (H.E.S.S. 2018)

CRs from SNRs Morphological complications

Figure: SN1006 VHE-map and leptonic SED-model (H.E.S.S. 2010)

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

Figure: Cas A Radio-spectral index map (right), Cas A Radio-to-IR-spectral index map (left) (Domček et al. 2021)

Fermi acceleration Coupled equations

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

Fermi acceleration The equations

Diffusion

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

$$\frac{\partial N}{\partial t} = \nabla D_r \nabla N - \nabla v N - \frac{\partial}{\partial p} \left(N \dot{p} - \frac{v}{3} N p \right) + Q$$

Advection

$$\frac{E_W}{\partial t} = -\left(v\nabla_r E_W + c\nabla_r v E_W\right) + k^3 \nabla_k D_k \nabla_k \frac{E_W}{k^3} + 2\left(\Gamma_g - \Gamma_d\right) E_W$$

Cooling Acceleration Injection

Advection + Compression Cascading Growth + Damping $\frac{\partial}{\partial t} \begin{pmatrix} \varrho \\ \boldsymbol{m} \\ E \end{pmatrix} + \nabla \begin{pmatrix} \varrho \boldsymbol{v} \\ \boldsymbol{m} \boldsymbol{v} + P \boldsymbol{I} \\ (E + P) \boldsymbol{v} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ L \end{pmatrix} \qquad \frac{\rho v^2}{2} + \frac{P}{\gamma - 1} = E$

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

The equations are solved:

- One dimensional
- Assuming spherical symmetry
- Including Synchrotron cooling for electrons
- On a comoving, expanding grid for turbulence and CRs → no free escape boundary
- Type-Ia, $B_0 = 5\mu G$

Fermi acceleration Turbulence setup

Initial turbulence derived from 1/10th of the Galactic diffusion coefficient

$$D_r(t=0) = 10^{28} \left(\frac{pc}{10GeV}\right)^{1/3} \left(\frac{B_0}{3\mu G}\right)^{-1/3} cm^2/s$$

Growth rate based on pressure gradient of CRs (resonant CR-instability *x*10)

$$\implies \Gamma_r = \mathbf{10} \frac{v_A p^2 v}{3E_W} \left| \frac{\partial N}{\partial r} \right|$$

 $\implies \mathbf{D}_k = k^3 v_A \sqrt{\frac{E_W}{2B_0^2}}$

Damping as diffusion in wavenumber space

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

DIAS

Results

Cosmic-ray escape The mechanism

Number of particles

 $t_3 > t_2 > t_1$

More complicated for CC-SNRs: e.g. hot CSM softens spectra (Das et al. 2022)

Total production spectrum of the SNR

Production spectra at the shock

Downstream spectrum \rightarrow detectable emission

Particle momentum

Particles lost to upstream

Cosmic-ray escape Production spectra

- The production
 spectrum agrees
 with galactic
 propagation models
 (Moskalenko et al.
 2002)
- The downstream spectra are softer than the production spectra
- Particles "escape" from deep downstream to upstream

From: A&A, 634 (2020) A59

DIAS

Institiúid Ard-Léinn | Dublin Institute for

Advanced Studies

Bhaile Átha Cliath

Gamma-ray spectra Spectral evolution: very young SNRs <1000 yrs

Model prediction:

Robert Brose, TeVPa, 8-12 August 2022

Gamma-ray spectra Spectral evolution: young SNRs 1000-3000 yrs

Model prediction:

Gamma-ray spectra Spectral evolution: young SNRs 1000-3000 yrs

Observation:

Figure: Gamma-ray flux from various SNRs (Funk, TeVPa 2011)

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

Why are only leptonic SNRs detected in this age-range: Selection effects!

 $L \propto N_{CR} \cdot n_{target}$

$$V_{SNR} \propto \rho^{-\frac{3}{5}} \cdot t^{\frac{6}{5}} \quad (\text{Sedov-solution})$$
$$V_{CR} \propto V_{SNR} \cdot \rho = \rho^{\frac{2}{5}} \cdot t^{\frac{6}{5}} \qquad n_{target} \propto \begin{cases} 1 \text{ for IC} \\ \rho \text{ for PD} \end{cases}$$

$$L_{PD} \propto
ho^{rac{7}{5}} \cdot t^{rac{6}{5}}$$

 $L_{IC} \propto
ho^{2/5} \cdot t^{rac{6}{5}}$

BUT $V_{shock} \propto \rho^{-\frac{3}{5}} \cdot t^{-\frac{3}{5}}$

→ SNRs in dilute environments accelerate longer, thus reach a brighter peak IC-emission!

Gamma-ray spectra Spectral evolution: young SNRs 1000-3000 yrs

DIAS

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath Advanced Studies

3

4

2

Gamma-ray spectra Spectral evolution: evolved SNRs >3000 yrs

Observation:

Model prediction:

Gamma-ray morphology Emission maps

PD-emission:

- Shell-like morphology throughout all phases and energies
- Faint halo emission

IC-emission:

- Initially shell like morphology
- Transition to center-filled

Emission maps

 Halo emission already after 2kyr

10GeV 10GeV 10GeV 10GeV 2 r/R_{sh} 0 100GeV 100GeV 100GeV 100GeV $^{-1}$ -2 316Gev 316Gev 1,000 yr 316GeV 300 yr 316GeV -310GeV 10GeV 10GeV 10GeV r/R_{sh} 0 100GeV 100GeV 100GeV 100GeV -2 316GeV 2.000 vr 316GeV 316GeV 316GeV 2 3 2 -33 -2 -1r/R_{sh} r/R_{sh}

1.0

PD

IC

1.5

2.0

2.5

Extended, off-plane SNRs are excellent test-beds: → Escape is resolvable!

> Figure: Radio and GeV γ-rays from FHES J1723.5-0501 (G17.8+16.7) (<u>Araya et al. 2021</u>)

Right Ascension (J2000)

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

0.0

0.5

Halo diffusion coefficient

DIAS Institiúid Ard-Léinn | Dublin Institute for

- Diffusion coefficient gets reduced up to ~20pc into the upstream
- Rise time similar across energies → down cascading
- Escaping CRs govern diffusion for low-energetic CRs

→ Similar behavior as in PWN-halos

From: A&A, 654 (2021) A139

Conclusions

A strong evolution of E_{max} results in **soft production spectra** even if the acceleration mechanism is standard DSA

- The spectral index of the production spectra is s ≈ 2.4 is close to the predictions by galactic propagation models (s = 2.2 2.4)
- Particle escape of the highest energetic CRs forms soft spectra at high energies and spectral breaks between 1-100GeV
- Reduced diffusion coefficient in the upstream; strong spatial and temporal evolution
- The gamma-ray morphology depends strongly on the emission mechanism:
 - Persistent shell-like structure for hadronic emission
 - Shell-like to center filled evolution for leptonic emission
- Stronger halo-emission for the leptonic channel → potentially detectable by currentgeneration IACTs
- No significant spectral-index deviation expected due to projection effects

The formation of gamma-ray halos around supernova remnants through particle escape Robert Brose, TeVPa, 8-12 August 2022

See also: <u>A&A, 634 (2020) A59; A&A, 654 (2021) A139</u>

Thank you for your attention!

Gamma-ray morphology Spectral index maps and Radio emission

Spectral index distribution:

 No significant deviation from regions of brightest emission (gamma-rays)

Radio-emission:

- Continuous Radiobrightening and X-ray fading
- Escape later even affects Radio-emitting electrons
 → Spectral-index variations

DIAS

Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath | Advanced Studies

Figure: Synchrotron-SED evolution

