

Closing In On the MeV Gap The Compton Spectrometer and Imager

Jarred Roberts, PhD (Assistant Project Scientist) UC San Diego Center for Astrophysics and Space Sciences

TeVPA meeting Kingston, ON Aug 11, 2022

'We need an MeV gamma-ray satellite telescope'

The Compton Spectrometer and Imager (COSI) was developed under NASA's APRA program as a balloon-borne telescope and has been recently selected as a NASA Small Explorer (SMEX) satellite mission for launch in 2026.

- Signals and sources in the COSI \otimes energy range (0.2-5 MeV)
 - $\diamond e^{-}e^{+}$ annihilation line at 511 keV
 - Gamma-ray lines from \Diamond nucleosynthesis
 - ♦ Accreting black holes and gamma-ray bursts (GRBs) w/polarization
 - Multimessenger sources \Diamond
 - ♦ Merging neutron stars
 - ♦ High-energy neutrinos

The "MeV gap" is one of the least explored regions of the electromagnetic spectrum

- ♦ Signals and sources in the COSI energy range (0.2-5 MeV)
 - ♦ e⁻e⁺ annihilation line at 511 keV
 - Gamma-ray lines from nucleosynthesis
 - Accreting black holes and gamma-ray bursts (GRBs) w/polarization
 - ♦ Multimessenger sources
 - Merging neutron stars
 - ♦ High-energy neutrinos

INTEGRAL/SPI (Bouchet+10)

Bulge positron excess origin?

Is the 511 keV Galactic bulge excess: Truly diffuse? Made up of individual sources? How many sources or components?

Signals and sources in the COSI energy range (0.2-5 MeV)

♦ e⁻e⁺ annihilation line at 511 keV

- ♦ Gamma-ray lines from nucleosynthesis
- Accreting black holes and gamma-ray bursts (GRBs) w/polarization
- ♦ Multimessenger sources
 - ♦ Merging neutron stars
 - ♦ High-energy neutrinos

Three windows on element formation associated with massive star evolution:

- ²⁶Al (1.809 MeV) traces massive stars, including pre-supernova (SN)
- ♦ ⁴⁴Ti (1.157 MeV) traces **recent** SN activity
- ⁶⁰Fe (1.173/1.333 MeV) traces SN activity over the past few million years

 Signals and sources in the COSI energy range (0.2-5 MeV)

- ♦ e⁻e⁺ annihilation line at 511 keV
- Gamma-ray lines from nucleosynthesis
- Accreting black holes and gamma-ray bursts (GRBs) w/polarization
- ♦ Multimessenger sources
 - ♦ Merging neutron stars
 - ♦ High-energy neutrinos

- Potential high levels of polarization
 - ~70% above 0.4 MeV for Cygnus X-1 (Laurent+11; Jourdain+12)
- ♦ What about other Galactic black holes?
- ♦ GRB distribution?
- ♦ AGN?

AGN: Cen A

- ♦ e⁻e⁺ annihilation line at 511 keV
- Gamma-ray lines from nucleosynthesis
- Accreting black holes and gamma-ray bursts (GRBs) w/polarization
- ♦ Multimessenger sources
 - Merging neutron stars
 - ♦ High-energy neutrinos

Credit: NASA's Goddard Space Flight Center/CI Lab

Supernovae + Gamma-rays: SN1987A

Gravitational Waves + Gamma-rays : GRB170817A + GW170817

Neutrinos + Gamma-rays: IceCube-170922A + 0506+056? gamma-ray emitting blazar

COSI science goals

1. Uncover the origin of Galactic positrons

2. Reveal Galactic element formation

3. Gain insight into extreme environments with polarization

4. Probe the physics of multimessenger events

Detecting photons at MeV energies with Compton telescopes

Cross sections for germanium

Compton event reconstruction

Multiple interactions within detector
 E_γ = E₁ + E₂ + E₃ + ...
 The photon may have come from any point on the "event circle"

COSI Imaging Techniques

Deconvolved image of a point source

Back-projected Compton cones in image space

Iterative deconvolution to recover image

COSI: NASA Small Explorer satellite mission

COSI instrument/spacecraft

Parameter	Requirements	
Energy range	0.2-5 MeV	
Sky coverage	100%-sky each day	
Energy resolution	0.2-1% FWHM	
Angular resolution	2.1º FWHM @ 1.8 MeV (²⁶ Al)	
Localizations	<1.0° for GRBs	
Polarization sensitivity	For GRBs, AGN, Galactic BHs	

COSI orbit and operations for daily all-sky coverage

- Near-equatorial orbit to minimize South Atlantic Anomaly passages
- Instantaneous >25%-sky field of view (FOV) and North-South repointing every 12 hours to cover the whole sky every day

- ♦ Large FOV needed for:
 - & GRBs (localizations and polarization measurements)
 - & All-Galaxy images of 511 keV and nuclear lines

COSI required line sensitivity and grasp compared to previous and current missions

- COSI is optimized for line sensitivity to enable full-Galaxy and all-sky images.
- ♦ COSI's large FOV provides a substantial improvement in grasp.

TeVPA 2022, Kingston, Ontario Jarred Roberts – University of California San Diego

What COSI doesn't do

- Although COSI helps, it doesn't completely close the MeV gap.
- Sub-degree but not sub-arcminute GRB localizations
- Not anticipating large number of Targets of Opportunity (TOOs).
 - Survey mode's all-sky coverage every day reduces the need
 - "Constant Zenith Angle" TOOs have some applications

Gamma-ray Space Explorer

Schedule and opportunities for involvement

Planned Schedule

- ♦ Currently in Phase B
 - Data Challenges in the coming months will be an opportunity for community involvement (http://cosi.ssl.berkeley.edu)
- Additional data challenges during Phases C and D
- ♦ Launch: 2026 (start of Phase E), followed by a 2-year prime mission, but no consumables, so could be significantly longer
- In addition to the key science goals, all-sky monitor results will be provided to the community
 - Please let us know what would be most useful for you!

Gamma-ray Space Explorer

The COSI collaboration

University of California

John Tomsick (Principal Investigator, UCB) Bryce Unruh (Project Manager, UCB) Steven Boggs (Deputy PI, UCSD) Jarred Roberts (Project Scientist, UCSD) Andreas Zoglauer (Project Scientist, UCB) J. Martinez Oliveros (Student Collaboration Lead) P. Saint-Hilaire (SEO Lead)

H. Lazar, J. Beechert, H. Gulick

Naval Research Laboratory

E. Wulf, C. Sleator, B. Phlips

Goddard Space Flight Center

A. Shih, C. Kierans, A. Smale

Northrop Grumman

Institutions of Co-Investigators and Collaborators

Clemson University Los Alamos National Laboratory Louisiana State University IRAP, France

U.S.NAVAL RESEARCH

NASA Goddard SPACE FLIGHT CENTER

INAF, Italy Kavli IPMU and Nagoya University, Japan JMU, Germany NTHU, Taiwan

We'd be very happy to hear from you! Contact Jarred Roberts: jmroberts@ucsd.edu

COS Gamma-Ray Space Explorer

Revolutionizing our understanding of the creation and destruction of matter within our galaxy and beyond

COSI requirements

	Characteristic	Requirement	
ls 1+2	Sky Coverage	 >25%-sky instantaneous FOV 100%-sky each day 	
Primarily for goal	Energy Resolution (FWHM)	 6.0 keV at 511 keV (capability ~4.7 keV FWHM) , reconstructed events 9.0 keV at 1.157 MeV (⁴⁴Ti) 	
	Narrow Line Sensitivity (2 yr, 3σ, point source) ❖ 511 keV • 1.8 MeV	 [photons cm⁻² s⁻¹] 1x10⁻⁵ (Galactic bulge is 100x brighter) 3x10⁻⁶ (Galactic ²⁶Al flux is 230x brighter) 	
	Angular Resolution (FWHM)	 5.1° at 511keV (capability ~3.6° FWHM) 2.0° at 1.8 MeV (²⁶Al) 	

Goal 3

Accreting BH polarization	•	Reaches bright AGN: Cen A, 3C 273, NGC 4151 Reaches several Galactic BHs (plus transients)
GRB polarization		>30 GRBs with polarization measurements

reporting • <1° localizations predicted	
reporting • <1° localization	ons provided in <1 hr

Radioactive Milky Way

Simulated COSI emission line images

Accreting Black Holes Polarization Measurements

Cyg X-1 polarization:

- ♦ 0.25-0.4 MeV: <20% (low polarization)
 - > thermal corona of hot electrons
 - > photons Compton upscattered off corona
- \bullet 0.4-2 MeV: 67±30% (high polarization)
 - > points to nonthermal jet contribution
 - > synchrotron self-Compton (SSC)

COSI will measure polarization (50% MDP, 99% confidence, 0.2-0.5 MeV) with flux limits:

 \bullet 6.9x10⁻¹⁰ erg cm⁻² s⁻¹

(Galactic black hole transients, 1 month)

 \Rightarrow 1.4x10⁻¹⁰ erg cm⁻² s⁻¹ (AGNs, 2 years)

(Laurent et al. 2011, Nature)

Cyg X-1 spectrum and modulation curves (from ESA press release)

COSI will measure Cyg X-1 polarization within a few weeks of launch

Nearby SNe and Classical Novae

- ♦ Nearby SNe
 - $\diamond~^{56}Co$ lines at 0.847 and 1.238 MeV detected from Type Ia SNe to a distance of ${\sim}20$ Mpc
 - COSI detections for ~1.7 per year
- ♦ Galactic CCSNe
 - Nuclear lines from more than ten different radioactive nuclei in the SN ejecta to probe asymmetries in the SN engine and details of the burning layers in the progenitor star
- ♦ Classical novae
 - Predicted 511 keV line and gamma-ray continuum have not been seen because the explosion and gamma-ray emission occur several days before the optical nova
 - COSI's large FOV gives a good chance to see this, and we would expect to see about 1 event per year

Isotope	Production	Decay chain
²⁶ A1	Hydrostatic burning, proton capture by ²⁵ Mg	 ²⁶A1 → ²⁶Mg* → ²⁶Mg Beta+ (p→n+e⁺) and 1.809 MeV gamma-ray
⁶⁰ Fe (neutron rich)	He and C shell burning, explosive burning, neutron capture	• ${}^{60}\text{Fe} \rightarrow {}^{60}\text{Co} \rightarrow {}^{60}\text{Ni}$ • Both beta- (n \rightarrow p+e-)
⁴⁴ Ti	Si burning in the inner regions of the material ejected by CCSNe	 ⁴⁴Ti → ⁴⁴Sc → ⁴⁴Ca EC and beta+ 1.157 MeV and 68/78, respectively

COSI Imaging Techniques

Modified Richardson-Lucy algorithmic techniques:

- Background fitting
- Data energy and time binning tunable full-sky imaging

COSI continuum emissions

•Preliminary analysis shows that the continuum emission level is between 1x and 3x (depending on the energy) of the GALPROP prediction for GDCE

•Spectrum below 0.511 MeV shows the largest excess

- Orthopositronium continuum?
- Unresolved point sources?

Spectrum from the source region (Karwin et al., in prep.)

