Gamma-ray and neutrino emissions from star-forming and starburst galaxies

9 August 2022, TeVPA, Kingston

Based on MNRAS 503 [2011.02483], ApJL 919 [2106.12348] and MNRAS [2203.03642]

with A. Ambrosone, D.F.G. Fiorillo, A. Marinelli, G. Miele, and O. Pisanti

Marco Chianese

Starburst galaxies (SBGs)

The Starburst Galaxy M82

Properties of SBGs

- ◆ Galaxies with high star-formation rate (~100 M_☉/yr, to be compared with ~3 M_{\odot} /yr in the Milky Way)
- Dense interstellar gas ($n_{ISM} > 100 \text{ cm}^{-3}$)
- Not very brilliant in γ -rays (only a few currently observed)
- ✦ Cosmic reservoirs: protons confined for about ~10⁵ yr

Marco Chianese | Unina & INFN

Hadronic production:

Interstellar gas as the target

$$p + p \to \pi^+ \, \pi^- \, \pi^0 \dots$$

Injected CRs with power-law spectrum $\,Q(p) \propto p^{-lpha} e^{-p/p_{p,{
m max}}}$

• Neutrinos and γ -rays from pions decays:

 $\pi^{\pm} \to e^{\pm} \nu_e \,\nu_\mu \,\overline{\nu}_\mu$ $\pi^0 \to \gamma \,\gamma$

Modelling SBGs point-like emission

In the calorimeter scenario, three main parameters:

- ✦ Cut-off energy
- ✦ Spectral index

Rate of SuperNovae explosions

parameter	value	parameter	value
$p_{p,\max}$	10^2 PeV	$\mathcal{R}_{\mathrm{SN}}$	$0.06 \ yr^{-1}$
α	4.2	В	$200\;\mu{\rm G}$
R	0.25 kpc	$n_{\rm ISM}$	$100 {\rm ~cm^{-3}}$
D_L	3.9 Mpc	$v_{\rm wind}$	$700 \mathrm{~km/s}$
ξcr	0.1	$U_{\rm rad}$	2500 eV/cm

Peretti+, MNRAS 487 (2019), MNRAS 493 (2020)

Modelling SBGs diffuse emission

◆ Prototype model: all the SBGs are equal to a galaxy with "known" parameters (e.g. M82)

Modelling SBGs diffuse emission

◆ Prototype model: all the SBGs are equal to a galaxy with "known" parameters (e.g. M82)

◆ Blending model: each SBGs have its own parameters (e.g different spectral indexes)

Blending versus prototype

Marco Chianese | Unina & INFN

Ambrosone+, **<u>2011.02483</u>**

Blending versus prototype

The diffuse gamma contributions (prompt + EM cascades) are almost the same!

Marco Chianese | Unina & INFN

Ambrosone+, **<u>2011.02483</u>**

Blending versus prototype

Larger contribution to diffuse neutrinos at ~100 TeV, alleviating the neutrino-gamma tension

Marco Chianese | Unina & INFN

Up to 40% of IceCube HESE neutrinos from SBGs

Diffuse multi-messenger analysis

SBGs contribution to the neutrino flux obtained by analyzing **Fermi-LAT+IceCube** diffuse data (including the emission from blazars and radio galaxies)

Diffuse multi-messenger analysis

SBGs contribution to the neutrino flux obtained by analyzing **Fermi-LAT+IceCube** diffuse data (including the emission from blazars and radio galaxies)

 1σ contour closed: preference for a non-zero SBG component

Point-like emission from nearby galaxies

Source

M82

Marco Chianese | Unina & INFN

Can we probe the calorimetric model with high-energy point-like observations?

Analyzing the spectral energy distributions (SEDs)

✦ HE gamma-rays: Fermi-LAT and IACTs data

Point-like emission from nearby galaxies

		= Analyzing the sr
Source	Uniform Prior	Analyzing the sp
	\dot{M}_*	
M82	3.0–30	HE gamma-
NGC 253	1.4–17	
ARP 220	60–740	
NGC 4945	0.35-4.15	TR+UV data:
NGC 1068	5–93	
NGC 2146	3–57	
ARP 299	28–333	
M31	0.09–0.90	
M33	0.09–0.90	
NGC 3424	0.4–5.4	
NGC 2403	0.1-1.2	
SMC	0.008-0.090	
Circinus Galaxy	0.1–8.1	

Marco Chianese | Unina & INFN

Can we probe the calorimetric model with high-energy point-like observations?

pectral energy distributions (SEDs)

-rays: Fermi-LAT and IACTs data

prior on the star-formation rate $M_* \simeq 100 \, {
m M}_\odot \, {\cal R}_{
m SN}$

Point-like emission from nearby galaxies

		· Analyzina the sr
Source	Uniform Prior	Analyzing the sp
	\dot{M}_*	
M82	3.0–30	' 🔶 🔶 🔶 HE gamma-
NGC 253	1.4–17	
ARP 220	60–740	
NGC 4945	0.35-4.15	➡ IR+UV data:
NGC 1068	5–93	
NGC 2146	3–57	🔶 Scaling Ken
ARP 299	28–333	v Scamg Ken
M31	0.09-0.90	
M33	0.09-0.90	(
NGC 3424	0.4–5.4	$n_{\rm ISM} = 175$ –
NGC 2403	0.1-1.2	$\sqrt{5}$
SMC	0.008-0.090	×
Circinus Galaxy	0.1-8.1	Gas der

Kennicutt, ARA&A 36 (1998); Inoue+, PASJ 52 (2000); Hirashita+, A&A 410 (2003); Yuan+, PASJ 63 (2011); Kennicutt and Evans, ARA&A 50 (2012); Kennicutt & De Los Reyes, ApJ 908 (2021)

Marco Chianese | Unina & INFN

Can we probe the calorimetric model with high-energy point-like observations?

pectral energy distributions (SEDs)

rays: Fermi-LAT and IACTs data

prior on the star-formation rate $M_* \simeq 100 \, {
m M}_\odot \, {\cal R}_{
m SN}$

nicutt's relations:

$$\frac{\dot{M}_{*}}{M_{\odot} \,\mathrm{yr}^{-1}} \right)^{2/3} \,\mathrm{cm}^{-3} \qquad U_{\mathrm{rad}} = 2500 \left(\frac{\dot{M}_{*}}{5 \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}}\right) \,\mathrm{eV \, cm}^{-3}$$

nsity as target for p-p interactions

Photon energy density as target for secondary production

Bayesian analysis

Results of the Likelihood Analysis of Current Gamma-Ray Data

Source	Uniform Prior <i>M</i> *	Most Likely Values (\dot{M}_*, Γ)	68% Credible Intervals		$\sqrt{2}$
			\dot{M}_*	Γ	Λ
M82	3.0–30	(4.5, 2.30)	[4.3, 4.6]	[2.27, 2.33]	1
NGC 253	1.4–17	(3.3, 2.30)	[3.14, 3.40]	[2.28, 2.32]	1
ARP 220	60–740	(740, 2.66)	[492, 740]	[2.51, 2.68]	1
NGC 4945	0.35-4.15	(4.15, 2.30)	[4.05, 4.15]	[2.23, 2.32]	1
NGC 1068	5–93	(16, 2.52)	[13, 20]	[2.45, 2.65]	(
NGC 2146	3–57	(15, 2.50)	[9, 27]	[2.44, 2.88]	(
ARP 299	28–333	(28, 2.15)	[28, 200]	$[1.40, 1.90] \cup [2.77, 3.00]$	(
M31	0.09–0.90	(0.34, 2.40)	[0.31, 0.40]	[2.29, 2.61]	(
M33	0.09–0.90	(0.44, 2.76)	[0.19, 0.56]	[2.57, 2.96]	(
NGC 3424	0.4–5.4	(5.4, 2.22)	[2.5, 5.4]	[1.92, 2.67]	1
NGC 2403	0.1–1.2	(0.75, 2.12)	[0.58, 0.96]	[1.92, 2.36]	(
SMC	0.008-0.090	(0.038, 2.14)	[0.037, 0.039]	[2.13, 2.16]	1
Circinus Galaxy	0.1–8.1	(6.6, 2.32)	[6.2, 7.8]	[2.15, 2.45]	(

Note. The columns report the source name, the SFR prior, the most likely values of the two parameters, the 68% maximum posterior density credible intervals of the marginal distributions, and the reduced chi-squared values considered as an estimate of the goodness of the fit. The star formation rate \dot{M}_* is in units of M_{\odot} yr⁻¹.

This allows us to predict the neutrino and VHE gamma-rays emission from these sources!

Marco Chianese | Unina & INFN

1.32

1.52 1.52

0.65 0.50 0.18

0.52 0.44

1.63 0.38 1.90

0.92

Point-like forecast

Cosmic-ray physics inside SBGs

The relation between neutrino and gamma-ray emissions is however model-dependent!

MODEL A: ADVECTION-DOMINATED

MODEL B: DIFFUSION-DOMINATED

Marco Chianese | Unina & INFN

$$\frac{1}{\tau_{adv}(p)} + \frac{1}{\tau_{diff}^{A}(p)} = Q(p)$$
Peretti+, MNRAS 487 (2019)
$$\frac{1}{\tau_{adv}(p)} + \frac{1}{\tau_{diff}^{B}(p)} = Q(p)$$
Krumholz+, MNRAS 493 (2020)
$$\frac{1}{\tau_{adv}(p)} = \frac{1}{\tau_{diff}^{C}(p)} = Q(p)$$
Krumholz+, MNRAS 493 (2020)
$$\frac{1}{\tau_{adv}(p)} = \frac{1}{\tau_{adv}(p)} = \frac{1}{\tau_{diff}^{C}(p)} = Q(p)$$
WERITAS

E [GeV]

)

When TeV gamma-rays are crucial

 $E^2 \Phi_{\gamma} \left[\text{GeV} \text{ cm}^{-2} \text{ s}^{-1} \right]$ ✦ Generation of 10⁴ mock data sets for the CTA telescope Model A Model B Mock data Current data ◆ CTA info from: 10^{2} 10^{0} 10^{1} 10^{-1} Acharya+, **1709.07997** E [GeV] Φ^{2}_{γ} [GeV cm⁻² s⁻¹] ◆ SWGO info from: Albert+, **1902.08429** Model A Model B Hinton, PoS ICRC2021 023 1-yr SWGO E^2 Mock data Current data 10^{-11} 10^{2} 10^{0} 10^{1} 10^{-1}

Marco Chianese | Unina & INFN

 $E \; [\text{GeV}]$

CTA forecast: Circinus

Implications for the diffuse emission

The two models for the CRs transport inside the SBGs lead to very different scenarios.

MODEL A: ADVECTION-DOMINATED

♦ 25% of HESE neutrino

Marco Chianese | Unina & INFN

MODEL B: DIFFUSION-DOMINATED

✦ Negligible contribution to HESE neutrino

Conclusions

- astrophysical neutrino signal.
- and cosmic-ray transport inside these sources.

Antonio Ambrosone

Damiano F.G. Fiorillo

Marco Chianese | Unina & INFN

◆ SBGs are promising high-energy emitters: they contribute up to 40% to the IceCube

◆ Upcoming gamma-ray telescopes will allow for a better constrain of the spectral cut-off

◆ Global Neutrino Network + CTA/SWGO surveys of the closer SBGs can solve the puzzle.

Antonio Marinelli

Gennaro Miele

Ofelia Pisanti

BACKUP SLIDES

Multi-messenger analysis

Gamma-ray contributions

- ♦ Starburst Galaxies
- Blazars (prompt + EM cascades)
- ✦ Radio Galaxies

Ajello et al., **ApJL 800 (2015)**

Extragalactic Gamma-ray Background

 $\chi^2_{\nu+\gamma}(N_{SBG}, N_{RG}, N_{RG}, N_{Blazars}, p^{max}) = \chi^2_{\nu} + \chi^2_{\gamma} + \begin{pmatrix} \Lambda \\ - \end{pmatrix}$

joint γ -v chi-square with 4 free parameters

Marco Chianese | Unina & INFN

Neutrino contributions

- ✦ Starburst Galaxies
- Blazars (resolved and unresolved)

Palladino et al., **ApJ 871 (2019)**

7.5-yr HESE and 6-yr cascades

uncertainties affecting theoretical estimations

$$\frac{N_{Blazars} - 1}{0.26} \right)^{2} + \left(\frac{N_{RG} - 1}{0.65}\right)^{2} + \left(\frac{N_{Blazars} - 0.80}{0.11}\right)^{2}$$

Positional limit of resolved point sources above 50 GeV (see Lisanti et al., ApJ 832 2016)

Comparison between best-fit scenarios

The blending scenario is **allowed** to give a greater contribution than the prototype scenario...but it is not enough...**other contributions at 100 TeV?**

Upper limit on the SBG component

