

Classical novae

- Binaries consisting of a white dwarf and a red giant
- Luminous eruptions caused by thermonuclear runaway
- Gamma-ray detection by Fermi-LAT from over a dozen galactic novae
- VHE gamma rays could be a key to reveal the origin of gamma rays, but no detection until 2021

2021 outburst of RS Ophiuchi (RS Oph)

- RS Oph: recurrent symbiotic nova
 - Recurrent period ~15 years
 - The white dwarf embedded in the red giant
- A new burst of RS Oph on 8 Aug. 2021
 - By optical and Fermi-LAT observations
 (The brightest nova in gamma rays)
- LST-1 started observations on 9 Aug.
- MAGIC and H.E.S.S. also observed and detected it. (Acciari et al. (2022) and H.E.S.S. Collaboration (2022))
 - The first detection of VHE gamma-ray emission from a nova.
 - Suggest hadronic origin of the emission

The prototype Large-Sized Telescope, LST-1

- Built on the CTA north site (La Palma)
- Currently under commissioning
- Designed for observing low-energy gamma rays (>20 GeV)
 - Large reflector (~400 m²)
 - High-QE PMTs (peak QE > 40%)
 - GHz sampling readout
 - Fast repositioning (< 20 s)
- Plays an essential role in observing transients

More LST-1 talks at TeVPA 2022

- LST-1 performance (D. Kerszberg)
- Overview of science results (D. Green)
- Study of LHAASO J2108+5157 (J. Jurysek)

LST-1 observations of RS Oph

- LST-1 started observations on 9 Aug., a day after the burst reports.
- LST-1 could take good quality data during the first nights
 - Effective time: 6.4 h
- Here we report preliminary results from the observations on the first nights

Date	Effective obs. time	Zenith [deg]	Condition
20210809	1.4 h	35-42	Good (dark + clear sky)
20210810	2.7 h	35-59	
20210812	2.3 h	35-55	
20210813	~1.5 h	36-54	Bad transmission
20210814	~1.5 h	35-46	
20210815	~1.5 h	41-57	
- Moon break -			
20210829	1.0 h	46-58	Good (dark + clear sky)
20210830	1.5 h	40-57	
20210901	0.3 h	56-64	
20210902	1.3 h	41-57	

Analysis method

- Calibration and reconstruction with lstchain v0.9
- Source-dependent approach
 - Shower parametrization assuming the source position
 - Energy threshold ~ 45 GeV
- Preliminary analysis with MC simulations at one direction close to that of the observations
- Analysis with updated MC simulations is in progress.

Results: alpha plot

- Clear detection of the outburst during the first days
 - Li&Ma significance: 7.5 sigma
 - Signal-to-noise ratio: 4.8%
- LST-1 took part in the first VHE gamma-ray detection from a nova!

The alpha distribution measured from the source position and that measured from a reflected background position.

Spectral Energy Distribution

- Spectral analysis with gammapy v0.19
- A power-law model is fitted to the spectrum.
- LST-1 obtains compatible results with those from MAGIC and H.E.S.S.
- Will support hadronic emission scenario suggested by MAGIC and H.E.S.S.

SED Comparison to Fermi-LAT

- Dedicated analysis of the Fermi-LAT data during the LST-1 observation period
- The spectrum from LST-1
 smoothly connects to that

 from Fermi-LAT thanks to
 LST-1's low energy threshold.

Results: Light curve (>100 GeV)

 The light curve in comparison to the MAGIC results.

- LST-1 estimates compatible flux with MAGIC's results
- Compatible with constant flux during the first days

MAGIC flux points from Acciari et al. 2022

Summary

- LST-1 obtained 6.4 h of good quality data during the first days of the RS Oph outburst.
- LST-1 clearly detected the outburst.
 (<u>Took part in the first VHE gamma-ray detection from a nova!</u>)
- The preliminary analysis shows **compatible results with those from MAGIC and H.E.S.S.**
 - Will support hadronic origin of gamma rays
 - Possible improvement in connection to Fermi-LAT by the low energy threshold ~45 GeV.
- Final results with updated analysis and simulations will come soon as well as physical interpretations of them.

Backup

Data after the moon break

Source-independent analysis

