Galactic Cosmic-Ray Propagation in the **Inner Heliosphere:** Improved Force-Field Model

In collaboration with John Beacom and Annika Peter (arXiv: 2206.14815)

Jung-Tsung Li (OSU) TeVPA 2022

Galactic Cosmic Ray Near The Sun

Parker Solar Probe (PSP)

- PSP reaches 0.05 AU from the Sun
- Radial gradients of anomalous CR
- Will provide energy spectrum of galactic CR

(Fox et al 2016; Rankin et al 2021, 2022)

Fermi Gamma-ray Telescope

- Gamma-ray emission from the Sun
- Galactic CR interaction with solar photon and atmosphere
- Require understanding of CR intensity near solar surface

(Moskalenko et al 2006; Abdo et al 2011; Ng et al 2016; Linden et al 2022)

Solar Modulation

Modulation process (short version):

- Solar wind carries magnetic turbulence
 - Magnetic turbulence interacts with CR
 - CR intensity is *reduced* as particles propagates toward the Sun
- Drift effect and charge-sign dependence are not considered in this work

Initial condition:

- Precise cosmic-ray measurements from AMS, PAMELA, etc
- Magnetic turbulence between Earth and Sun is known (from PSP)

Simple model of CR intensity at all heliocentric radii < 1 AU

Force-Field Model

• Full cosmic ray transport equation, in the solar system frame

$$\frac{\partial U_p}{\partial t} + \nabla \cdot \left(C \mathbf{V}_{sw} U_p \right) - \nabla \cdot \left(\kappa \cdot \nabla U_p \right) + v_{\mathrm{D}} \cdot \nabla U_p + \frac{1}{3} \frac{\partial}{\partial p} \left(p \mathbf{V}_{sw} \cdot \nabla U_p \right) = 0$$
Rate Convection Diffusion Drift Momentum loss change

• 1D force-field model: convection flux balances diffusion flux

1. Force-field solution
$$\frac{J_E(E, r_1)}{E^2 - E_0^2} = \frac{J_E(E + \Delta \Phi, r_2)}{(E + \Delta \Phi)^2 - E_0^2}$$

2. Characteristic eqn
$$\frac{dE}{dr} = \frac{V_{sw}}{3\kappa_{rr}} \frac{(E^2 - E_0^2)}{E}$$

 $\kappa_{rr} = \kappa_{\parallel} \cos^2 \psi + \kappa_{\perp} \sin^2 \psi$ in the plane, with $\kappa_{\parallel} \gg \kappa_{\perp}$ in the inner heliosphere κ_{\parallel} is determined from CR resonant interaction with magnetic turbulence

(Parker 1965; Gleeson & Webb 1978)

Quasi-linear theory (QLT)

Quasi-linear theory describes the slow evolution of the particle distribution in a weak turbulent plasma back to a marginally stable state.

$$\frac{v^2}{4} \int_{\mu_{\min,s}}^{1} \frac{\left(1-\mu^2\right)^2}{D_{\mu\mu}} d\mu \qquad D_{\mu\mu} = \frac{1-\mu^2}{2|\mu|v} \left(\frac{\Omega_{0,s}}{|\langle \mathbf{B} \rangle|}\right)^2 V_{\mathrm{sw}}(r) E_{\mathrm{B},xx}\left(f_{\mathrm{res}}, \mathcal{O}_{\mathrm{sw}}(r)\right) d\mu$$
(Jokipii 19)

- μ : cosine of pitch angle
- $E_{\rm B}$: magnetic power spectrum
- f_b : frequency break

• PSP measurement of magnetic power spectrum (Chen et al 2020)

- A. Turbulence evolution down to 0.17 AU
- B. Frequency break f_b which separates 1/f range and inertial range turbulence

Diffusion Coefficient

Measured mean free path is approximately 2 times higher than QLT result, known as Palmer consensus

Circle and triangle: measurements of CR proton, from Palmer 1982

(See also Bieber et al 1996)

Modulation Potential Energy

Small modulation potential increase for $E_{\rm kin} \lesssim 10 {\rm ~GeV}$ Magnetic spectrum (1/f v.s. inertial) matters

Cosmic-Ray Energy Spectrum

Modulation in the inner heliosphere is modest $\approx 10~\%$ reduction of intensity from 1 AU to 0.1 AU

Radial Gradient

	 Measurements 			
	6.6	$\pm 4 \ [\% AU^{-1}]$	(Marquardt & Heber 2019)	
	3.8	$\pm 5 [\% AU^{-1}]$	(McDonald et al 1977)	
	$0 \pm$	5 [%AU ⁻¹]	(McDonald et al 1977)	
	• This	• This work		
	\bigcirc	Standard QLT	_	
10		Standard QLT	$- \times \frac{1}{2}$	
		(motivated by Pa	almer consensus)	

Conclusion

- A simple force-field model provides a good result for inner-heliospheric modulation when a realistic magnetic turbulence is incorporated in the diffusion calculation
- Drift velocity and heliospheric current sheets are not incorporated in the force-field model.
 Require a comparison between force-field solution and a full numerical results of Parker's transport equation
- Main takeaway: solar modulation is modest from 1 AU to 0.1 AU
- Application in the study of solar gamma-ray