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Primary Cosmic Rays
Primary cosmic rays p, He, C, O, ..., Si, …, Fe are produced during the lifetime of stars and accelerated 
by supernovae. They propagate through interstellar medium before they reach Earth.

Measurements of primary cosmic ray fluxes are fundamental to understanding the origin, 
acceleration, and propagation processes of cosmic rays in the Galaxy.
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AMS is a space version of a precision detector used in accelerators
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Calibration at CERN
with different particles at different energies
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AMS Accurate Rigidity Scale Determination
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The vibrations and accelerations during the AMS launch into space could change the 
tracker ladder positions at the micron level. Such misalignment was corrected in space by 
analyzing trajectories of opposite charged particles in tracker, namely by comparing of the 
tracker measured rigidity (R) with electromagnetic calorimeter measured energy (E), for 
positron and electron events. This allows to measure the coherent displacement of the L2-
L8 layers with accuracy better than 0.2 μm, corresponding to the accuracy of the tracker 
rigidity scale of better than 1/30 TV−1.

(c)  Absolute Rigidity Scale

The position of the outer planes L1 and L9 are precisely aligned by using cosmic ray events
to a stability of ~ 2 microns. 
The stability of inner tracker layers (L2-L8)  is  a tenth of micron. 
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The vibrations and accelerations during the AMS launch into space could change the 
tracker ladder positions at the submicron level. Such  misalignment  was corrected in 
space by analyzing  trajectories of opposite charged particles in tracker, namely by 
comparing of the tracker measured rigidity (R) with electromagnetic calorimeter measured 
energy (E), for positron and electron events. This allows  to measure the coherent 
displacement of the L2-L8 layers with accuracy  better than 0.2 μm, corresponding to the 
accuracy of the tracker rigidity scale  of better than 1/33,000 GV−1.

(c)  Absolute Rigidity Scale

The position of the outer planes L1 and L9 are precisely aligned by using cosmic rays events
to a stability of  ~2 μm. 
The stability of inner tracker layers (L2-L8)  is  a tenth of micron. 
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Precision measurement of cosmic-ray spectra requires an
determination of nuclear interactions of each element in the detector material

ISS horizontal 
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Precision Measurements of Inelastic Cross Sections for Accurate Flux Determination

c

Define (P, Z) of the nuclei with the central spectrometer
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He on C Target Cross Section Measurement
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AMS measured He + C Interaction Cross Section
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Precision Measurements of Cosmic Ray Nuclei

Tracker (9 Layers) + Magnet: Rigidity (Momentum/Charge)
with  multi-TV maximal detectable rigidity (MDR)

Coordinate Resolution          MDR
Z=1                         10 µm 2 TV
Z≥2                       5 - 8 µm 3.0 - 3.7 TV     

TOF (4 Layers): Velocity and Direction
Δβ/β2 ≈ 1−2% (Z ≥ 2), 4% (Z=1)

L1, UTOF, Inner Tracker (L2-L8), LTOF and L9  
Consistent Charge Along Particle Trajectory
Inner Tracker Charge Resolution:
ΔZ = 0.05-0.35 (1≤Z≤28)  
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Precision Study of Cosmic Nuclei through the lifetime of ISS
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Latest AMS proton flux measurement
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Latest AMS Helium flux measurement

14AMS provides the most accurate He measurement in the energy range  1 GeV to 6 TeV

Latest AMS Helium flux measurement 
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AMS Proton/Helium Flux Ratio

Type equation here.

𝐀 + 𝐂×(𝐑/𝟒𝟓𝐆𝐕)∆
𝐀 = 𝟑. 𝟏𝟒 ± 𝟎. 𝟎𝟕
∆ = −𝟎. 𝟑𝟎𝟎 ± 𝟎. 𝟎𝟎𝟗

AMS found that proton flux have two components, one is like Helium
and the other is unique to proton flux.
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AMS C and O Nuclei Flux Measurement
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AMS C and O Nuclei Flux  Measurements:
AMS results are different from other  measurement both in magnitude and the energy dependence. 
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AMS results are different from other measurement both in magnitude and the energy dependence. 
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Latest AMS Measurements of He, C, and O Fluxes
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Latest AMS Measurements of He, C and O spectra

18
Phys. Rev. Lett. 119, 251101 (2017): AMS found that He, C, O have an identical rigidity dependence 

above ~60 GV and at higher rigidities they all deviate from a single power in an identical way 

Traditional Understanding
Single Power Law ɸ=CRγ

AMS 10 Years 

He, C and, O fluxes have an identical rigidity dependence above 60 GV.
Above 200 GV, they all deviate from a single power law in an identical way.
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Ne, Mg, and Si Identification
Charge misidentification from non-interacting nuclei is negligible  <0.1% 

For the events R > 4 GV selected  by Tracker L1,
UpperTOF and LowerTOF.
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Background from Nuclei Interactions 
Residual background from heavy nuclei , interacting in AMS materials between L1 and L2 , was found to 

be 1-2% depending on rigidity, with systematic error on flux measurements <0.5%.

Tracker L2-L8

Tracker L1

selected by Tracker L2-L8 
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FIG. S3. Comparison of the di↵erences of the coordinates measured in L3 or L5 to those obtained

from the track fit using the measurements from L1, L2, L4, L6, L7, and L8 between data and

simulation in the rigidity range R > 50 GV for (a) neon, (b) magnesium, and (c) silicon nuclei.

The observed bending coordinate accuracy is 6.7 µm for neon, 7.1 µm for magnesium and 7.4 µm
for silicon.
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Maximum detectable rigidity ≈ 3 TV

Tracker Rigidity Resolution
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Spatial Resolution 

The tracker spatial resolution is 6.7 μm for Ne, 7.1 μm for Mg, and 7.4 μm for Si. 
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Latest AMS Measurements of Ne, Mg, Si, and S Fluxes
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AMS Ne, Mg, Si, and S Nuclei Flux  Measurements:
AMS results are different from previous measurement both in magnitude and the energy 

dependence. They are also different from the Cosmic Ray Theory predictions.
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M. J. Boschini et al 2020 ApJS 250 27

AMS results are different from previous measurement both in magnitude and the energy dependence.
They are also different from the cosmic ray theory predictions. 
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Properties of Heavy Primary Cosmic-Ray Ne, Mg, Si

Suprisingly,  heavy primary cosmic rays Ne, Mg, and Si also have identical rigidity dependence above 86 GV, 
but it is distinctly different from light primary cosmic rays He, C, and O.
This shows that primary cosmic rays have at least two distinct classes.

Phys. Rev. Lett. 124, 211102 (2020): AMS previously  observed that light primary cosmic rays He, C, and O have identical 
rigidity dependence above 60 GV and deviate from a single power law above 200 GV. Surprisingly, heavy primary cosmic rays Ne,

Mg, and Si also have identical rigidity dependence above 86 GV, but it is distinctly different from light primary cosmic rays.
This shows that primary cosmic rays have at least two distinct classes of rigidity dependence. 

/

23

γNeMgSi = γHeCO + (-0.042 ± 0.007)

AMS 10 Years
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Latest AMS Results: Sulfur Rigidity Dependence

Sulfur belongs to the same class as Ne, Mg, and Si. 

Latest AMS Results: Sulfur Rigidity Dependence

24Sulfur belongs to the same class as Ne, Mg, and Si.
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Heavy Primary Cosmic Rays: Iron and Nickel Fluxes
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Heavy Primary cosmic rays: Iron and Nickel Fluxes

Z=26

29

M. J. Boschini et al 2020 ApJS 250 27
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Unexpected Results: Iron is the Same Class as He, C, O 
instead of the heavier Ne, Mg, Si

Unexpectedly, Iron is in the He, C, O primary cosmic ray group

AMS 10 Years
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AMS Nickel Flux: rigidity dependence is similar to Fe

28

AMS Nickel flux:  rigidity dependence   is similar to Fe
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Summary

• The latest ten-year results on primary cosmic rays p, He, C, O, Ne, Mg, Si, S, Fe, and Ni
from 2 GV to 3 TV were presented. These new measurements are challenging our 
understanding of cosmic ray physics.

• AMS will continue taking data for the ISS life time and explore properties of cosmic ray 
nuclei up to Zn and beyond.


