

Searching for Secluded Dark Matter with Present and Future TeV Gamma-ray Observatories Fortes, G.; Siqueira, C.; Queiroz, F.; Viana, A.

Aion Viana

TeVPA, August, 2022

What are the main evidences for the Dark Matter Existence?

Main candidates: Weakly Interacting Massive Particles \rightarrow WIMPs!

Detection Methods

Stringent limits on WIMPs

Alternative scenarios

Secluded Models

Motivation

- Escape from the stringent limits from direct and collider searches;
- It can be probed by indirect detection experiments;
- We will focus on TeV secluded models;
- Channels: $V \rightarrow 4e$, $V \rightarrow 4\mu$, $V \rightarrow 4\tau$, $V \rightarrow 4q$, and $V \rightarrow 4b$.

Indirect Detection

Spectral Energy Distribution

Pictures from Calore, 2018.

Secluded Models @ TeV y-ray experiments

Gamma-ray spectrum for Secluded TeV I

$$\frac{dN^{\gamma}}{dx_1} = 2 \int_{t_{1,min}}^{t_{1,max}} \frac{dx_0}{x_0\sqrt{1-\epsilon_1^2}} \frac{dN^{\gamma}}{dx_0} \tag{1}$$

with $\epsilon_1 = m_V/m_{DM}$, and

$$t_{1,min} = \frac{2x_1}{E_1^2} \left(1 - \sqrt{1 - \epsilon_1^2} \right)$$
(2)
$$t_{1,max} = Min \left[1, \frac{2x_1}{E_1^2} \left(1 + \sqrt{1 - \epsilon_1^2} \right) \right]$$
(3)

We can also define,

$$\epsilon_f = \frac{2m_f}{m_V}.\tag{4}$$

Gamma-ray spectrum for Secluded TeV II

Target: Galactic Center

Proximity (8kpc)

Region with high (possibly) central DM density: core or cusp?

High astrophysical background in gamma rays

Aion Viana

Secluded Models @ TeV γ -ray experiments

Dark Matter distribution in the GC

- Here we assume an Einasto profile (for comparison with cored see AV et al 2019 arXiv:1906.03353)
- Morphology helps to discriminate between a DM gamma-ray signal and the residual isotropic hadronic background

γ -ray Experiments

GC halo: DM annihilation sensitivity

Search for signal in the inner $r < 1^{\circ}$ for HESS (254h) and CTA (500h) and $r < 10^{\circ}$ for SWGO (10 yrs)

GC halo: DM annihilation sensitivity

- Search for signal in the inner $r < 1^{\circ}$ for HESS (254h) and CTA (500h) and $r < 10^{\circ}$ for SWGO (10 yrs)
- Exclusion of $\pm 0.3^{\circ}$ band in latitude to avoid strong astrophysical background
- 2D likelihood analysis with spectral and spatial information of signal and background

Annihilation cross-section limits - Leptons

For τ⁺τ⁻: combined (CTA,SWGO) sensitivity smaller than thermal relic cross-section(3 × 10⁻²⁶ cm⁻³ s⁻¹) for all masses below 100 TeV
For μ⁺μ⁻ and e⁺e⁻: less contraining and large dependency on ε_f

Annihilation cross-section limits - Quarks

- For qq̄: combined (CTA,SWGO) sensitivity smaller than thermal relic cross-section for all masses below 100 TeV
- For bb: combined (CTA,SWGO) sensitivity smaller than thermal relic cross-section for all masses below 20-40 TeV

Aion Viana

Secluded Models @ TeV y-ray experiments

TeVPA 2022 16 / 17

Conclusions

- Secluded models are good alternatives to the standard WIMP scenario;
- In this work we explored the complimentarity between three different experiments looking at the Galactic Center: SWGO, HESS and CTA;
- We found stringent limits able to explore the standard WIMP annihilation cross section, even at the whole energy range explored in this work.
- Paper under internal review by CTA consortium (soon on ArxiV)

Thank you!!

Secluded Models @ TeV γ -ray experiments

