SEARCHING FOR THE FUNDAMENTAL NATURE OF DARK MATTER IN THE COSMIC LARGE-SCALE STRUCTURE

Keir K. Rogers

Dunlap Fellow, Dunlap Institute for Astronomy & Astrophysics, University of Toronto

Find dark matter by only known interaction — gravity — trace dark matter by galaxies & intergalactic gas

Illustris simulation

Early galaxy surveys ruled out hot dark matter

White (1986)

Sloan Digital Sky Survey maps galaxies and intergalactic gas towards edge of observable Universe

Beyond the WIMP: dark matter model space

Canonical ULA DM: Rogers & Peiris (2021, PRL); Light particle DM: Rogers et al. (2022, PRL)

Wave vs particle dark matter

Mocz et al. (2019)

Light (sub-GeV) particle DM collisionally dampens growth of small-scale structure

Chen et al. (2002); Dvorkin et al. (2014); Rogers et al. (2022, Phys. Rev. Lett.)

Access smaller cosmic scales to test "canonical" 10⁻²² - 10⁻²¹ eV ULA dark matter

• Ly-alpha forest traces linear, high-redshift ($z \sim 5$), small-scale density perturbations

Rogers & Peiris (2021ab, Phys. Rev. Lett., Phys. Rev. D)

Lyman-alpha forest absorption traces dark matter — robustly account for range of astrophysical states

Lyman-alpha forest absorption traces dark matter — robustly account for range of astrophysical states

- Ly-alpha forest traces DM & intergalactic medium astrophysics
- ~ 3000 CPU-hours per simulation in I2-D parameter space
- \Rightarrow need ML-accelerated "emulator"

Lukić et al. (2015); Rogers et al. (2019); Rogers & Peiris (2021)

Dark matter bounds driven by new small-scale data

Rogers & Peiris (2021, PRL); Rogers et al. (2022, PRL)

Strongest upper limit on light dark matter cross section

Rogers, Dvorkin, Peiris (Phys. Rev. Lett., 128, 17, 171301, 2022)

"Canonical" 10-22 - 10-21 eV ULA DM is ruled out

Rogers & Peiris (Phys. Rev. Lett., 126, 7, 071302, 2021)

Summary

- Detect DM in large-scale structure by only known property gravity
- Strongest upper limit on light DM proton cross section
- Strongest lower limit on DM mass rule out canonical 10-22 eV mass