

Axion dark matter-induced echo of supernova remnants

Yitian Sun

with Katelin Schutz, Anjali Nambrath

Calvin Leung, Kiyoshi Masui, Harper Sewalls

Earth SNR Echoes TeVPA 2022 | Aug 11th Based on 2110.13920

Axion like particles (coupling to γ) $L \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

Axion like particles (coupling to γ) $L \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

Primakoff process:

Decay:

Axion like particles (coupling to γ)

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 3 / 27

Axion like particles (coupling to γ) $L \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

Primakoff process:

Stimulated decay:

• Axion echo via stimulated decay

- Making use of the axion echo
- Supernova remnants as sources

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 5 / 27

$$
\begin{array}{ll}\n\text{Now} & \text{two} \\
\text{two} & m_a/2 \quad \text{spectral line in axion rest frame} \\
\tau = \frac{64\pi\hbar}{m_a^3 g_{a\gamma\gamma}^2} \sim 4 \times 10^{35} \text{yr} \left(\frac{m_a}{\mu \text{eV}}\right)^{-3} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{GeV}^{-1}}\right)^{-2}\n\end{array}
$$

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 6 / 27

$$
\begin{array}{c}\n\mathsf{www} & \mathsf{www} \\
\mathsf{rate} = \Gamma\n\end{array}
$$

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 7 / 27

Axion stimulated decay mw

 n www.

MWT

mw

$$
\leftarrow\hspace{-0.5em}\leftarrow\hspace{-0.5em}\leftarrow\hspace{-0.5em} m\hspace{-0.2em}\rightarrow\hspace{-0.5em} m\hspace{-0.2em}\rightarrow\hspace{-0.2em} \cdots
$$

$$
\text{rate} = \Gamma
$$

rate $= n\Gamma$

EMM

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 7 / 27

Axion stimulated decay

 $\frac{1}{n}$ www. mm \leftarrow

rate $= n\Gamma$

$$
\mathrm{rate} = \Gamma
$$

 ρ_a

radio waves (lots of photons)

Axion stimulated decay

 $\begin{matrix}&&\text{max}\&\text{max}\&\text{max}\end{matrix}$ ww > **MWY** EMM

rate $= n\Gamma$

$$
\mathrm{rate} = \Gamma
$$

$$
\begin{array}{ccc}\n&\text{and} &\text{and} &\text{then}\n\end{array}
$$

radio waves (lots of photon

Axions: a mirror for radio sources

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 8 / 27

Axions: a mirror for radio sources

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 8 / 27

\rightarrow How to use this effect to look for axions?

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 8 / 27

Outline

- Axion echo via stimulated decay
- Making use of the axion echo
- Supernova remnants as sources

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 9 / 27

Making use of the axion echo

o Shoot a radio beam into space and look for echo (Arza & Sikivie 2019)

Earth

Fry

Axion DM

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 10 / 27

Making use of the axion echo

Earth

o Shoot a radio beam into space and look for echo (Arza & Sikivie 2019)

o Use extragalactic sources \sim infinitely far away, like radio galaxy Cyg A. (Ghosh, Salvado, Miralda-Escudé 2020)

Sources at infinity

Fm

Making use of the axion echo

Earth

Axion DM

 \circ Shoot a radio beam into space and look for echo (Arza & Sikivie 2019)

o Use extragalactic sources \sim infinitely far away, like radio galaxy Cyg A. (Ghosh, Salvado, Miralda-Escudé 2020)

o Use nearby sources…

Fry

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 12 / 27

Geometry of the axion echo (from a nearby source)

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 13 / 27

Geometry of the axion echo (from a nearby source)

Geometry of the axion echo

(from a nearby source)

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 15 / 27

Geometry of the axion echo

(from a nearby source)

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 17 / 27

Outline

- Axion echo via stimulated decay
- Making use of the axion echo
- Supernova remnants as sources

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 18 / 27

o Synchrotron radiation from shocked e⁻.

3-color image of the W28 supernova remnant seen in Very Large Array (VLA) and Southern Galactic Plane Survey. NRAO/AUI and Brogan et al. 2006.

- o Synchrotron radiation from shocked e⁻.
- o Much brighter in the past.

3-color image of the W28 supernova remnant seen in Very Large Array (VLA) and Southern Galactic Plane Survey. NRAO/AUI and Brogan et al. 2006.

3-color image of the W28 supernova remnant seen in Very Large Array (VLA) and Southern Galactic Plane Survey. NRAO/AUI and Brogan et al. 2006.

- o Synchrotron radiation from shocked e⁻.
- o Much brighter in the past.
- $\overline{\circ}$ Age ~ 10⁴ years, close to the light crossing time of the Milky Way halo.

ww>

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 19 / 27

EWW

3-color image of the W28 supernova remnant seen in Very Large Array (VLA) and Southern Galactic Plane Survey. NRAO/AUI and Brogan et al. 2006.

- o Synchrotron radiation from shocked e⁻.
- o Much brighter in the past.
- $\overline{\circ}$ Age ~ 10⁴ years, close to the light crossing time of the Milky Way halo.
- o Luminosity history can be modelled

Modeling of SNR luminosity history

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 21 / 27

Modeling of SNR luminosity history

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 21 / 27

Modeling of SNR luminosity history

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 21 / 27

Projected limits & uncertainties

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 22 / 27

Telescopes: FAST, SKA-I, CHIME…

Five-hundred-meter Aperture Spherical Telescope (FAST)

Sensitivity for W50 SNR

Xinhua

Combined limits & uncertainties

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 24 / 27

Outline

- Axion echo via stimulated decay
- Making use of the axion echo
- Supernova remnants as sources
- Galactic synchrotron emission as source

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 25 / 27

Galactic synchrotron radiation as source

Work led by Harper Sewalls from McGill U.

Yitian Sun | Axion DM-induced echo of supernova remnants 2110.13920 | 26 / 27

- \circ Axion dark matter behaves like a blurry, monochromatic mirror for radio sources.
- o Supernova remnants are great sources because they are once bright in the past, and not too close to us.
- o With existing telescope like FAST and CHIME, we have sensitivity to new parameter space despite conservative modeling choice.

- \circ Axion dark matter behaves like a blurry, monochromatic mirror for radio sources.
- o Supernova remnants are great sources because they are once bright in the past, and not too close to us.
- o With existing telescope like FAST and CHIME, we have sensitivity to new parameter space despite conservative modeling choice.

Thank you for your attention!

Backup slides

Comparison with observations

Measured radio surface brightness to diameter relation for SNRs and simulations. Pavlović, Urošević, Arbutina 2018.

Supernova Remnant Dynamics $R-t$

One of the published photograph of the Trinity atomic bomb tests that allowed British physicist G. I. Taylor to estimate the explosion energy.

Sedov-Taylor solution:

- o Ejecta dominated phase \sim 300 yr.
- o Sedov-Taylor phase $\sim 10^4$ yr.
- o Radiative phase \sim 10⁵ yr.
- o Terminal phase.

$$
R = \xi_{\rm front} \left(\frac{E}{\rho_{\rm ISM}} \right)^{1/5} t^{2/5}
$$

SNR Brightness evolution $|\Sigma - D|$

Measured radio surface brightness to **modelled.** diameter relation for SNRs and simulations. Pavlović, Urošević, Arbutina 2018.

 \circ Synchrotron radiation flux (isotropic):

$$
S_{\rm syn} \sim V K_e B^{\frac{p+1}{2}} \nu^{-\frac{p-1}{2}}
$$

for an electron distribution:

$$
\frac{\Delta n}{\Delta E}\sim K_{e}E^{-p}
$$

- \circ Electron distribution index p can be measured from radio spectra.
- $\circ~$ Total electron energy VK_e and magnetic field evolution must also be

SNR modelling: electrons

 \circ Electron spectral index p :

o Uncertainty can arise from a nonlinear synchrotron spectrum, or different portions of the SNR having different.

 \circ e.g. for our best candidate SNR W50 (SNR G039.7-02.0):

 $p = 2.4 \pm 0.2$

oElectron energy evolution:

o Classical model [1]: electrons produced (ionized) at the shock front but lose energy in the expanding nebula:

$$
VK_e \sim R^{1-p}
$$

o Alternative model: total electron energy is conserved:

$$
VK_e \sim \mathrm{const.}
$$

SNR modelling: Magnetic field

o Magnetic field evolution:

o Classical model: compression of interstellar magnetic field, flux is conserved: $B \sim R^{-2}$

o Magnetic field amplification (MFA) simulations:

$$
B \sim v_{\rm sh}^{2 \sim 3} \sim R^{-1.5 \sim 2.25}
$$

o MFA onset time:

- o Core-collapse supernovae have dense circumstellar medium, which interacts with shock front very early on.
- \circ Simulations (spherical SN [1], planar shock wave [2]) suggests

 $t_{\text{MFA}} < 100 \text{ yr}$