Simulation and Indirect Detection of Dark Glueball Showers

Caleb Gemmell

TeVPA, Queen's University, 10/08/2022 Partially based on work with David Curtin and Chris Verhaaren [arXiv: 2202.12899] Contact: caleb.gemmell@mail.utoronto.ca

Model Motivation:

- Dark showers are a signature that arise from hidden valley models
	- Hidden valley models are theoretically motivated as they can solve ongoing problems such as the little hierarchy problem (Twin Higgs etc…)
- In the case where there is no light states with dark colour below the dark confinement scale, the only hadronic states that can form are 'dark glueballs', composite dark gluon states
- Very few quantitative studies of dark glueball showers, due to the fact all known hadronization models no longer hold Ingelman, Sjöstrand

Andersson, Gustafson, (1983)

- Interested in the case that DM is uncharged under dark colour, but annihilates through the dark sector
	- DM + DM --> dark glueballs --> SM

Indirect Detection Motivation

One benefit of indirect detection experiments is that they probe astrophysical length scales, possibly giving insight into more of the dark sector spectrum, not just the short living states

Zero-th order Q: How does this
Zero-th order Q: How does this

Zero-th order Q: How doose DM
Zero-th order Q: How change DM
annihilation channel changes?

nilation channer
constraints / excesses?

dark sector itself through this

process???

Q: Can we probe the

More interesting

Dark Glueball Properties:

- Confined state of only dark gluons
- Majority of knowledge comes from Lattice QCD studies Morningstar, Peardon, arXiv:hep-lat/9901004

Athenodorou, Teper, arXiv:2106.00364

- Spectrum of 12 stable states (in absence external couplings)
- Masses entirely parameterized by the confinement scale $(m_0 \sim 6\Lambda)$

Juknevich, arXiv:09z11.5616

Dark Glueball Decay Modes to both sectors can generate non-renormalizable operators connecting them. If the characteristic $\overline{}$ **Devis Object Decess Media**

- Couples to standard model via heavy quark loop:
- Dimension 6 Higgs operator \blacksquare Dimension of the data gluons to the SM. However, massive mediator states that couple \blacksquare

$$
{\cal O}^{(6)}~~\sim~~\frac{1}{M^2}H^\dagger H\, tr(XX)
$$

• Dimension 8 Gauge operator where *X* and *FSM* refer to the dark gluon and SM field strengths. If present, these operators $\sum_{i=1}^{n}$

$$
\mathcal{O}^{(8a)} \sim \frac{1}{M^4} tr(F_{SM} F_{SM}) tr(XX)
$$

$$
\mathcal{O}^{(8b)} \sim \frac{1}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu}
$$

15.0
15.0
15.0

- \bullet We consider three cases:
- Purely Dim 6 (Higgs Portal) **Families Fig. 1** and SM field strengths. If $\begin{bmatrix} 5.0 \end{bmatrix}$
- Purely Dim 8 (Gauge Portal) $\begin{bmatrix} 2.3 \\ 0.0 \end{bmatrix}$ allow some or all of the glueballs to the $2.5¹$
	- Dim 6 and Dim 8, but Dim 8 suppressed by higher scale (Twin Higgs like) 8 and 1992 and 1993 and 1994 and 1994 and 1994 and 1994 and 1994 and 1994 and 1997 and 1997 μ

Pure Glue Hadronization

Curtin, **Gemmell**, Verhaaren, arXiv:2202.12899

- We use GlueShower, publicly available $N_f = 0$ QCD Monte Carlo event generator
- Implement pQCD to calculate gluon splittings
- Non-perturbative production of glueballs suppressed due to large mass hierarchy
- Gives upper bound on final state multiplicity
- Jet -like shower, similar to SM

Pure Glue Hadronization

- Nuisance parameters
	- Hadronization scale multiplier
		- Scales upwards, reduces final state multiplicity
	- Hadronization temperature multiplier ⇤*had* = 2*m*⁰
		- Explores different relative multiplicities of dark glueball species

$$
P_J \propto (2J+1) \left(\frac{m_J}{m_0}\right)^{3/2} e^{-(m_J-m_0)/T_{had}}
$$

- Plasma-like shower
- Large virtuality gluons form excited states at **the end of perturbative shower**
The end of perturbative shower
	- Plasma decays isotropically by thermal glueball emission
- Define 8 benchmark points that bracket the range of possible hadronization
phenomena

Fragmentation Functions

Photon Spectra (Galactic Frame)

Indirect Detection methodology

Fermi-LAT Dwarf Spheroidal Section Constraints will be a function of the DM mass mχ, annihilation cross-– which itself depends on the number of cascade steps, dently, there are a few generic features worth pointing oudal that higher-step cascades have a spectrum of \mathbf{R} \sim Eventual at lower \sim Eventual at lower \sim Eventual at lower \sim

bin from photon spectra the identity of the final state particle and possible and possible and possible and possible and possible and pos • Galculate energy flux for each $\frac{10^{-23} E}{\pi}$

$$
\Phi_E = \frac{\langle \sigma v \rangle}{8\pi m_\chi^2} \left[\int_{E_{\rm min}}^{E_{\rm max}} E \frac{dN}{dE} dE \right] J_i
$$

- Use publicly released likelihood profiles for each of the dwarf galaxies which is the J-factor approximate $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ σ doc publicly released included \mathcal{L} $\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\}$
- Follow Fermi-LAT methodology, profile over J-factor uncertainty e chemin and montes. prome over a factor differential

AMS-02 Antiproton Constraints

- We use DRAGON2 to propagate
cosmic rays from SM background and DM signal
- Propagation parameters taken from De La Torre Luque, arXiv:2107.06863
- To account for solar modulation due to the heliosphere we use the force field approximation with charge-dependent potential
- Keep propagation parameters fixed but vary solar modulation parameters and antiproton flux normalization in fit
	- Fit only above 5 GeV to minimize influence of solar modulation assumptions

Galactic Centre Excess

- Take excess as recently calculated in arXiv:2101.11027
- Get best fit from chi-squared test using statistical errors from the base model
- Different interpretations exist of the excess (DM, millisecond pulsars) but the existence of an excess is agreed upon

Preliminary results

⇠

⇠

g^D

0++ *h*⇤

g^D

*q q*² *q*₂

0+*,*1+

R

Dark Matter Constraints

Dark Glueball Sector Constraints (Higgs Portal)

- We fit the GCF and find antiproton constraints across the eight benchmark points
- We find that some hadronization models are inconsistent with current era astrophysical observations

Dark Glueball Sector Constraints (Higgs Portal)

- We fit the GCF and find antiproton constraints across the eight benchmark points
- We find that some hadronization models are inconsistent with current era astrophysical observations

Dark Glueball Sector Constraints (Gauge Portal)

Dark Glueball Sector Constraints (Gauge Portal)

Dark Glueball Sector Constraints (Twin Higgs like)

Dark Glueball Sector Constraints (Twin Higgs like)

Conclusions:

- Dark showers are a general signature of hidden valley models, motivated as solutions to the little hierarchy problem and its evasion of current constraints
- Zero flavour case is a previously unstudied parameter space due to uncertainty around pure glue hadronization process
- GlueShower is the first Monte Carlo glueball generator, additionally can explore various regimes of glueball production
	- Able to calculate theoretical uncertainty range on observables/constraints
	- Outputs are relatively robust to range of benchmark parameters we provide
- **Multimessenger analysis allows us to probe the physics of the dark sector**
	- Already with current era indirect detection data we can begin to constrain the pure glue dark sector

Thank you!

Contact: caleb.gemmell@mail.utoronto.ca

Antiproton Spectra (Galactic Frame)

- Across wide range of benchmarks, <10 factor difference in multiplicity/energy
	- \cdot ~3 for inclusive observables
- Larger uncertainty on exclusive predictions
	- In the high energy regime, correctly follows the analytical trend expected from pQCD

Jet -like

