

PROPAGATION OF COSMIC RAYS IN PLASMOIDS OF AGN JETS: IMPLICATIONS FOR MULTIMESSENGER PREDICTIONS

Julia Becker Tjus, Mario Hörbe, **Ilja Jaroschewski**, Patrick Reichherzer, Wolfgang Rhode, Marcel Schroller, Fabian Schüssler TeVPA 2022 – 08.08.2022

RUHR-UNIVERSITÄT BOCHUM Department of Physics and Astronomy Chair for Theoretical Physics IV

arXiv:2202.01818

Motivation

- Active Galactic Nuclei (AGN): one of most luminous objects in Universe
- Assumed accelerator of Cosmic Rays (CRs) with highest energies up to $E_{\rm CR} = 10^{21} \, {\rm eV}$
- Blazars: leptonic/hadronic components, both possibly
 → secondary neutrinos
- Modelling is challenging!

AGN structure with a Jet

The Space domain

Transport in turbulent fields: Ballistic vs. Diffusive

Transport in turbulent fields: Criteria

Following [Reichherzer et al. MNRAS (2020)]:

Reduced rigidity:

$$\rho = \frac{r_g}{l_c} = \frac{E}{q \ c \ B \ l_c} \qquad \longrightarrow \qquad E \ge \frac{5}{2\pi} \cdot l_c \cdot c \cdot q \cdot B$$

- Reduced rigidity ρ can be used as criterion to distinguish between the necessity to either propagate ballistically (QB) or diffusively (RSR):
 - Ballistic motion for $\rho \ge \frac{5}{2\pi}$
 - Diffusive propagation for $\frac{l_{\min}}{l_{\max}} \le \rho < \frac{5}{2\pi}$
 - $l_{max} = \frac{2\pi}{k_{min}} \rightarrow$ maximum scale of magnetic turbulence spectrum
 - *k_{min}*: lowest wave number defined by turbulence injection scale

Transition between QB and RSR

$$E \geq Z \cdot \left(\frac{l_c}{10^{11} \text{ m}}\right) \cdot \left(\frac{B}{0.42 \text{ G}}\right) \cdot 10^{15} \text{eV}$$

Plasmoid:

- $10^{12} \text{ m} < R < 10^{16} \text{ m}$
 - $l_c = 1\% R$ $\rightarrow 10^{10} \text{ m} < l_c < 10^{14} \text{ m}$
- $10^{-3} \text{ G} < B < 10 \text{ G}$

RUHR

BOCHUM

UNIVERSITÄT

The Time domain

Telegraph vs. Diffusion equation

$$\frac{\partial f}{\partial t} + \tau \frac{\partial^2 f}{\partial t^2} = \kappa \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right)$$

 τ : Transition time between ballistic and diffusive propagation

$$t_{\rm diff,N} = -\ln(1-N)\cdot\tau$$

RUHR

UNIVERSITÄT BOCHUM

Simulations

Ref. CRPropa 3: Batista et al. JCAP (2016)

Slide provided by M. Schroller

RUHR

BOCHUM

UNIVERSITÄT

RUR

Simulation: AGN structure with a Jet

RUHR

UNIVERSITÄT BOCHUM RUR

Running Diffusion Coefficients

- Simulation parameters (incomplete):
 - B = 1 G
 - $l_c = 10^{11} \text{ m}$
 - Homogeneous particle distribution
- Averaging κ(t) for late times (plateaus) to approximate the diffusion coefficient:
 - $\kappa = \lim_{t \to \infty} \kappa(t) \approx \langle \kappa(t) \rangle_{t \gg t_0}$
- Fit of three most distinct low-energy plateaus for simple power-law yields:

$$\kappa(E) = 10^{13.54 \pm 0.06} \left(\frac{E}{\text{GeV}}\right)$$

RUHR

UNIVERSITÄT BOCHUM RUB

10^{5} GeV vs. 10^{8} GeV (10^{14} eV vs. 10^{17} eV)

Propagation Effects: Comparison @ 10⁵ GeV

- Horizontal shift: uncertainty in numerical determination of diffusion coefficient
- Cut-off at large times
- **Diffusive transport** (constant diffusion coefficient):

 $\frac{dN}{dt} \propto t^{-1/2}$

RUHR

UNIVERSITÄT BOCHUM

Propagation Effects: Comparison @ 10⁸ GeV

• ballistic transport:

 $\frac{dN}{dt} \propto t$

 Initial slight drop: statistical deviations from homogeneous particle distribution in plasmoid → more particles on outer spheres at t = 0

RUHR

UNIVERSITÄT BOCHUM

Summary & Conclusions

- A simulation scheme is established for the **ballistic propagation** of hadronic plasmoids traveling along the AGN jet axis.
- For the proper implementation of hadronic or leptonic interactions in AGN-jets, **propagation regimes** must be considered accordingly!
 - Estimates for **secondary particle fluxes (e.g., neutrinos)** in highly variable and violent environments depend on the primary particle spectrum!

Shape of simulated flares can be misinterpreted if propagation regimes and time-scales are not considered!

Thank you!

Appendix

Diffusion timescales

$$t_{\text{diff},N} = -\ln(1-N)\frac{3\kappa_0}{v^2} \left(\frac{2\pi E}{5qcBl_c}\right)^{\delta}$$

with
$$\begin{cases} \delta = 1 \quad \text{for } \rho \lesssim 1\\ \delta = 2 \quad \text{for } \rho \gg 1 \end{cases}$$

$$10^{0}$$

$$10^{-2}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-4}$$

$$10^{-6}$$

$$10^{-8}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-10}$$

$$10^{-12}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-14}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

RUHR UNIVERSITÄT BOCHUM

Full list of simulation parameters

Parameter	Value
Proton energy E _p	$10^{5}{ m GeV} - 10^{8}{ m GeV}$
Plasmoid radius R	10 ¹³ m
Plasmoid Lorentz factor Γ	10
Magnetic field: Initial RMS value B_0	1G
Magnetic field: Turbulence & spectral index α	Kolmogorov-type, $\alpha = -5/3$
Magnetic field: Correlation length l_c	10 ¹¹ m
Magnetic field: Grid points	$(512)^3$
Magnetic field: Spacing	R/256
Propagation module (CRPropa intern): Ballistic	PropagationBP
Propagation module (CRPropa intern): Diffusive	DiffusionSDE
Propagation step size	$10^{-3}R$

Steady-state diffusion coefficient

System: parameter comparison

i	P _i	Hoerbe et al. (<i>V_i</i>)	Schroller et al. (<i>W_i</i>)
1	Radius of plasmoid R	1e13 m	1e13 m
2	Spacing Δs	2*R	2*R
3	timestep Δt	33358 s	33358 s
4	# timesteps N_t	308557	308557
5	# spatial steps $N_{x,y,z}$	2	2

Magnetic field: former parameter

i	P _i		V _i	W _i
6	# of gridpoints	N _{Gr}	256	512
7	Spacing	Δs_B	R / (128)	R /(256 * 64)
8	Root Mean Value	B_0	1 G	1 G
9	Correlation length	l_c	10^(-2) R	10^(-2) R
10	Lmin	l_{min}	R / (64)	R / (256 * 32)
11	Lmax	l_{max}	R / (32)	R/(32)
12	# of spatial scalings	$N^B_{x,y,z}$	2	4
13	# of temporal scalings	N_t^B	308557	617114
14	Scaling: spacing	Δs^B	2 * R	R
15	Scaling: timesteps	Δt^B	33358 s	16679

Propagation and energy: comparison parameter

i	P _i		V _i	W _i
16	Propagation method	Р	СК	BP
17	Min. step size	Δx_{min}	10^(-2) R	10^(-5) R
18	Max step size	Δx_{max}	10^(-2) R	10^(-3) R
19	Precision	Е	10^(-3)	10^(-3)
20	Injection energy	Ε	10^(8) GeV	10^(8) GeV
21	Max. trajectory length	d	10 pc	10 pc
22	Minimum energy	E _{min}	10^(2) GeV	10^(2) GeV
23	# of particles	Ν	10000	10000

Transport in Turbulent Fields: Ballistic vs. Diffusive

Slide provided by M. Schroller

RUHR

UNIVERSITÄT BOCHUM

Transport in turbulent fields: Ballistic vs. Diffusive

Simulations – expectation:

diffusive + ballistic approach deviate at small timescales and converge at larger times \rightarrow steady state diffusion coefficient reached