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1) 

‣ Milky-Way is embedded in a large dark matter halo


‣ Hosts smaller dark matter halos (subhalos)


‣ Abundance of substructure to distinguish between 

dark matter models 

Griffen et al. (2016)

Why the galactic dark matter halo?
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Small scale observations

Weinberg et al. (2013)

Missing satellites

Popolo et al. (2009)

Cored

Cusped

Cusp/core Too-big-to-fail 

Bullock et al. (2017)

‣ CDM successful on reproducing the large scale structures in the Universe


‣ However, DM-only N-body simulations find discrepancies with observations at small scales  (below ~1 Mpc)

Λ

Small scale discrepancies



Warm m = 2 keV

6 Lovell et al. (2014)

‣ Solutions:                                                 Baryonic physics / non-CDM (such as Warm Dark Matter)

Cold
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‣ Solutions:                                                 Baryonic physics / non-CDM (such as Warm Dark Matter)

Cold

supernova feedback / ionisation processes
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‣ Solutions:                                                 Baryonic physics / non-CDM (such as Warm Dark Matter)

Cold

Free-streaming effects



Warm m = 2 keV

9 Lovell et al. (2014)

‣ Solutions:                                                 Baryonic physics / non-CDM (such as Warm Dark Matter)


‣ Probe small scales:                                  Abundance of Milky-Way satellites

Cold



Warm m = 2 keV

10 Lovell et al. (2014)

‣ Solutions:                                                 Baryonic physics / non-CDM (such as Warm Dark Matter)


‣ Probe small scales:                                  Abundance of Milky-Way satellites


‣ Subhalo modelling:                                 Numerical simulations / Analytical model

Cold



‣ Solutions:                                                 Baryonic physics / non-CDM (such as Warm Dark Matter)


‣ Probe small scales:                                  Abundance of Milky-Way satellites


‣ Subhalo modelling:                                 Numerical simulations / Analytical model

Warm m = 2 keV

11 Lovell et al. (2014)

Cold

Fast & flexible
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SASHIMI  


Semi-Analytical SubHalo Inference Modeling



1. Structure forms  —  Matter Power spectrum

Warm particles 

suppress small scale 

perturbations

Thermal WDM (Viel+2011)

Observed Planck+2018



1. Structure forms
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2. Dark matter haloes accrete

‣ Halos are formed through gravitational collapse above 


‣ Analytical expressions for the accretion history based on the Extended Press-Schechter

δ(z) > δc
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2. Dark matter haloes accrete

Number of subhaloes with ( , ) 

at accretion within host M

m z

1. Structure forms
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2. Dark matter haloes accrete

Mass fraction of subhalos 

in certain volume (based 

on EPS, Yang+ 2011)

1. Structure forms
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2. Dark matter haloes accrete

Main branch of 

host halo evolves

1. Structure forms



3. Subhaloes evolve in time
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2. Dark matter haloes accrete1. Structure forms

Hayashi+ 2003

t=0 orbit t=0.5 orbit t=1 orbit



‣ Incorporate average mass-loss due to tidal stripping (Hiroshima+ 2018, Van den Bosch+ 2005) 




‣ Internal properties change:  before and after tidal stripping 


‣ Remove completely disrupted subhalos 

dm
dt

=
m − m(rt)

Tr

(ρs, rs, rt)

(rt < 0.77rs)

3. Subhaloes evolve in time

19

Mass stripped at pericenter after 
first orbital period  beyond Tr rt

2. Dark matter haloes accrete1. Structure forms



3. Subhaloes evolve in time
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Evolved Subhalo mass function:   

dN(m |M, z)
dm

= ∫ d ln ma ∫ dza
d2N

d ln madza
× ∫ dcaP(ca |ma, za)δ(m − m(z |ma, za, ca))

Extended Press-Schechter formalism

2. Dark matter haloes accrete1. Structure forms



3. Subhaloes evolve in time
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Evolved Subhalo mass function:   

dN(m |M, z)
dm

= ∫ d ln ma ∫ dza
d2N

d ln madza
× ∫ dcaP(ca |ma, za)δ(m − m(z |ma, za, ca))

2. Dark matter haloes accrete1. Structure forms

Log-normal distribution for concentration (Ludlow+ 2016)



3. Subhaloes evolve in time
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Evolved Subhalo mass function:   

dN(m |M, z)
dm

= ∫ d ln ma ∫ dza
d2N

d ln madza
× ∫ dcaP(ca |ma, za)δ(m − m(z |ma, za, ca))

2. Dark matter haloes accrete1. Structure forms

Mass-loss



4. Satellite galaxies form within
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Galaxy formation physics is model-dependent


‣ All subhalos host satellites (canonical)


‣ Galaxy formation threshold (mass, circular velocity)

2. Dark matter haloes accrete 3. Subhaloes evolve in time1. Structure forms



5. Obtain total number of satellites in the Milky-Way

24

2. Dark matter haloes accrete 3. Subhaloes evolve in time 4. Satellite galaxies form within

‣ Integrate evolved subhalo mass function

1. Structure forms
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DES & Pan-STARRS1 observe ultra-

faint satellite galaxies with ~80% sky 

coverage.


Drlica-Wagner et al. (2020)

Observed satellites in the Milky Way

270 satellites after 

completeness correction
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We exclude warm dark matter models that produce too 

few satellites with SASHIMI at 95% confidence level. 
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  All subhalos host satellite galaxies


‣ Exclude WDM mass at 95% CL 




‣ Model-independent constraints

mWDM > 3.5 − 5 keV

Warm dark matter: Constraints

Dekker et al. (2021)



  Galaxy formation threshold on mass


 
Msh > 108 M⊙
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Dekker et al. (2021)

Warm dark matter: Constraints



  Galaxy formation threshold on 

maximum circular velocity


‣ Subset of 94 satellites with 

kinematic data (Simon 2019)


‣   (Leo V)vmax > 4 km/s

Dekker et al. (2021)
29

Warm dark matter: Constraints
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Sterile Neutrino: Current constraints

‣ Well-motivated WDM candidate


‣ Produced through mixing 

 with neutrinos


‣ Enhanced by lepton asymmetry  

(Shi&Fuller 1999) 

sin2(2θ)

More mixing with ν

Less mixing with ν

   X-ray constraints — (Foster+ 

2021, Cherry+ 2017, Ng+ 2019)


  Theory — (Serpico+ 2005)


 3.5 keV line — (Bulbul+ 2014, 

Dessert+ 2020)
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Sterile Neutrino Constraints

Dekker et al. (2021)

MMW = 1012 M⊙

All subhalos host satellite galaxies


 Constraints at 95% CL


Exclude sterile neutrino mass <12 keV
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* https://github.com/shinichiroando/sashimi-w


  https://github.com/shinichiroando/sashimi-c


Contact: a.h.dekker@uva.nl

Codes SASHIMI publicly available on GitHub* 


https://github.com/shinichiroando/sashimi-w
https://github.com/shinichiroando/sashimi-c
mailto:a.h.dekker@uva.nl
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2) Indirect searches


Complementary searches for sterile neutrinos through 

X-ray observations
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Sterile neutrino: Indirect searches with X-rays

‣ Sterile neutrino decays into monochromatic X-ray line 


‣ eROSITA:  All-sky X-ray survey (4 years)


‣ Studied diffuse emission from Galactic halo

νs → νa + γ
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X-ray count sky maps

2.5 ks eROSITA exposure

Remove Galactic plane with |b|<20 

X-ray bubbles

(Predehl et al. 2020)Decay signal from the 

Galactic halo

mνs

= 9keV, Γνs
= 10−28s−1

Isotropic components

Cosmic X-ray background (Lumb 
et al. 2002)

eROSITA’s detector

Extragalactic dark matter signal
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X-ray count sky maps

2.5 ks eROSITA exposure

Model Mock data sets

Generate mock data sets

Joint likelihood analysis  — Obtain upper limits at 95% CL
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Dekker et al. (2021)

Sterile Neutrino Constraints: X-ray observations

Median, 68% and 95% 
containment regions

Excluded regions

(Foster et al. 2021, 
Cherry et al. 2017, Ng et 
al. 2019)

3.5 keV line
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XENON1T excess explained by 
ALP at 3σ (Aprile et al. 2020) ??

Axion-like particle Constraints: X-ray observations

Dekker et al. (2021)
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XENON1T excess explained by 
ALP at 3σ (Aprile et al. 2020) ??

Axion-like particle Constraints: X-ray observations

Knut Moraa presented at IDM2022 excess gone!

Dekker et al. (2021)
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Excluded regions

Median, 68% and 95%

Axion-like particle Constraints: X-ray observations

Dekker et al. (2021)
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Summary

❖ Semi-analytical model SASHIMI publicly available on GitHub


❖ Rule out WDM models based on satellite counts in the Milky Way 

   ,  for 


❖ Complementary results with eROSITA X-ray observations

mWDM > 4.4 keV mνs
> 12 keV MMW = 1012M⊙
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Thank you! 

Summary
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Minimum peak mass


Dekker et al. (2021)
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Tidal stripping

dm(z)
dt

= − A
m(z)
τdyn ( m

Mhost )
ζ

dm
dt

=
m − m(rt)

Tr

• Van den Bosch et al. (2005) present analytical description 

for the average mass loss rate of dark matter haloes


• Hiroshima et al. (2018) consider toy model for the 

average mass loss of a subhalo
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Tidal stripping

Hiroshima et al. (2018)

Agreement for CDM with numerical simulations


Adopt toy model to get  for WDM(A, ζ)
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Evolved subhalo mass function

- After tidal stripping the internal structure of a subhalo changes


- Determine  at accretion for given 


- Obtain  after tidal stripping 


- Subhalos with  are completely disrupted


(ρs, rs, rt) (c, m, z)

(ρs, rs, rt)

rt < 0.77 rs

Penarrubia et al. (2010)

Evolution of  and  as a 

function of mass loss fraction

Vmax rmax
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Comparison with numerical simulation


Mhost = 1.8 × 1012M⊙

Dekker et al. (2021)
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Sterile neutrino (Venumadhav et al. (2015))

- Produced through mixing 

 with neutrinos 

(non-thermal)


- Lepton asymmetry 

enhances resonant 

oscillations 


(Shi & Fuller 1999)

sin2(2θ)

νe,μ,τ → νs

Matter Power Spectrum
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Structure formation

Dark matter haloes are formed by perturbations in the matter density field 


Spherical collapse model:  


δ(x) = ρ(x)/ρ̄ − 1

δ(z) > δc ≈ 1.686

Van den Bosch (2020)

Press-Schechter formalism

 follows a random walk over 


Positions that cross  form a halo


Nr density of haloes with mass M = Nr 

density of peaks above  smoothed 

over M


δ x

δc

δc
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Structure formation

Zentner (2006)

Extended Press-Schechter formalism


 follows a random walk in -space for fixed 


Each trajectory starts at (0,0): Largest possible halo 

mass


Obtain the fraction of mass inside a halo of mass M 

at redshift z


δ (S, δS) x


