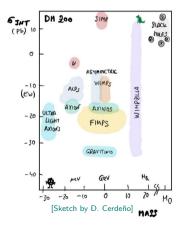
Search for dark matter signatures with ANTARES and KM3NeT

Sara Rebecca Gozzini


on behalf of the ANTARES Collaboration

Instituto de Física Corpuscular (IFIC), University of Valencia and CSIC

TeVPA - August 8, 2022

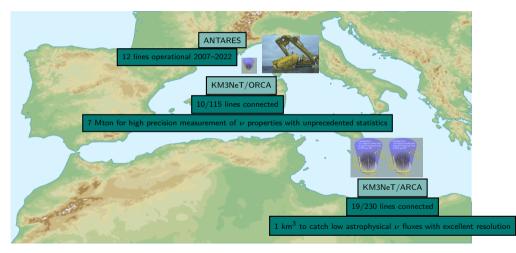
Unique assumption: the non-ordinary "substance" that makes up to a 27% of energy budget of the Universe comes in form of a **new elementary particle**.

Properties?

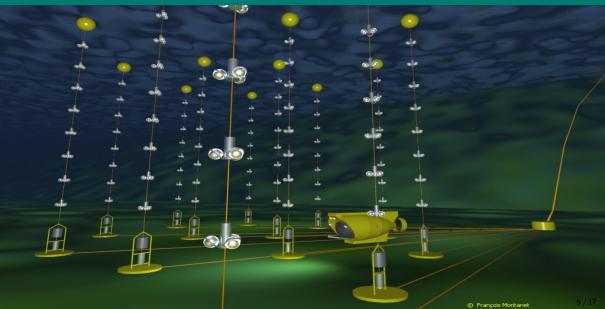
- Neutral
- Stable on cosmological scales
- Relic abundance matches amount observed nowadays
- Not excluded by current searches
- No conflicts with BBN or stellar evolution

Mass and interaction strength: very unconstrained

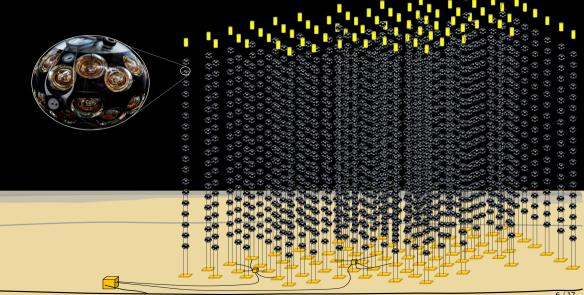
Target: astrophysical environment


Need to **predict fluxes** of high-energy ν from dark matter decay or pair-annihilation.

WIMP WIMP $\xrightarrow{\text{ANN}}$ interm. channel $\rightarrow mr + X$ WIMP $\xrightarrow{\text{DEC}}$ interm. channel $\rightarrow mr + X$

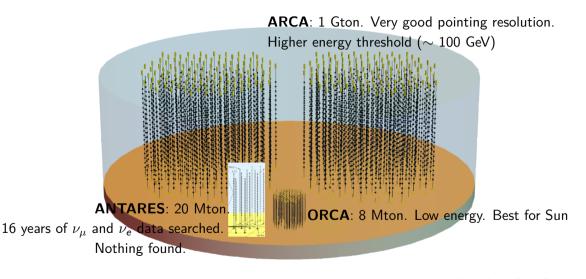

An instrument like ν telescope does not point to a specific sky direction \rightarrow best dark matter sources are: Galactic Centre (extended and relatively close) or Sun (very close)

Mediterranean telescopes: ANTARES and KM3NeT

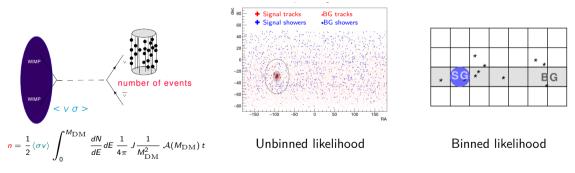

Cherenkov detectors instrumenting water with a grid of photomultipliers organised in lines

ANTARES: switched off in Feb. 2022 and dismantled in May-June 2022

KM3NeT: 19 lines ARCA + 8 lines ORCA connected

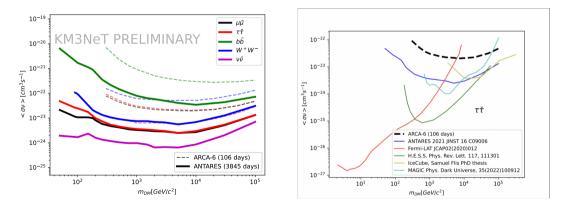


KM3NeT


ANTARES

Mediterranean telescopes to scale

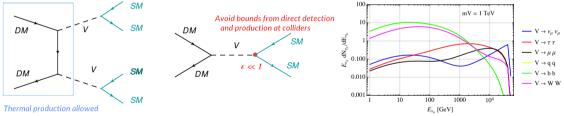
Structure of ν indirect searches


Measurement = arrival directions of two topologies: track- and shower-like, and energy proxy. Signal = a cluster of n ν -induced events daugthers of dark matter pair annihilation process.

The probability for **one** process to happen is \propto velocity of projectile $\times \sigma$. Translate limit on flux into limit on velocity-averaged pair annihilation cross-section $\langle \sigma v \rangle$.

Limits on pair annihilation of dark matter in the Galactic Centre

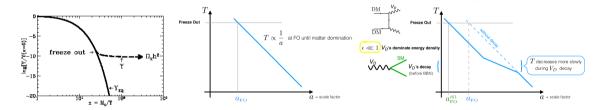
ANTARES data 2007 - 2020 is compatible with background [Phys.Lett B 805, 135439 (2020)] First sensitivities with 6-line configuration of ARCA.


Heavy dark matter in secluded scenarios

No evidence for WIMP at the GeV-TeV scale; where to search next?

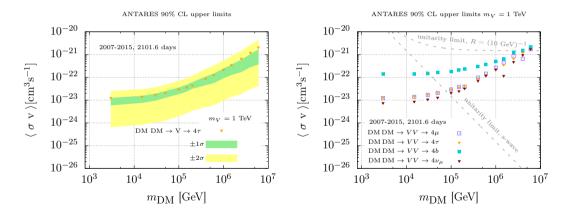
Above 10-100 TeV, in line with recent interest for BSM physics in heavy sectors at colliders

 Unitarity bound on the dark matter mass naturally evaded with a modified cosmology implying a change of freeze-out point


Spectra of relevance for experiments can be computed from 'boosted' PPPC [JCAP 2019 014]

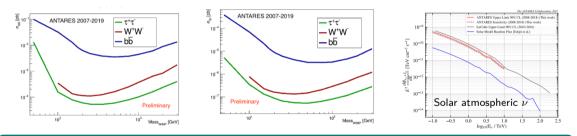
The ν signal at ANTARES arises from the annihilation of DM pairs into two mediators, then decaying into SM particles that produce ν s via decays and showering.

Standard cosmological evolution: $\Omega_{\rm DM} \propto \frac{1}{\sigma v}$.


Secluded: universe at freeze-out is smaller \Rightarrow the same amount of DM is later more diluted $\Rightarrow \sigma v (DM DM \rightarrow VV)$ smaller $\Rightarrow DM$ can be heavier

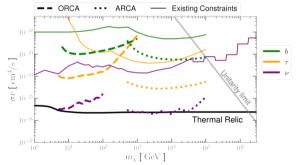
Standard WIMP mass constraint at $m_{\rm DM} = \mathcal{O}(100)$ TeV [PRL 64 (1990) 615] can be evaded in new cosmological scenario.

Limits on heavy secluded dark matter

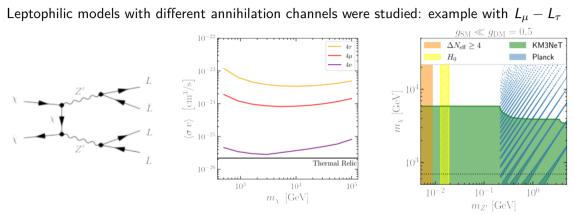

Upper limits span for first time dark matter masses up to 6 PeV [JCAP06(2022)028]

Search for dark matter in the Sun

- In equilibrium between capture and annihilation
- Sensitive at low velocities (= easier capture)
- Clean: if signal \rightarrow direct interpretation (astro bg well known)



Sun has known isotopic abundance \Rightarrow sensitive to WIMP-nucleon cross section for spin-dependent and spin-independent case (odd or even atomic number)


Maximum likelihood based search with angular power spectrum, 10-year expectation, preliminary detector acceptance taken from letter of intent. Signal spectra from PPPC4DMID under 100 GeV, and HDM from 100 GeV to 100 TeV. [Work of external collab. S. du Pree, K. Ng, L. S. Miranda, C. Arina, A. Cheek]

Minimal DM model

- Vector mediator s-channel
- scalar mediator t-channel
- Anomaly free L-L models

Testing minimal dark matter models with angular power spectrum method

Very promising in case of low-mass Z' decaying into ν only (when $m_{Z'} < 2M$ BR 100% to neutrinos). Dark matter can only annihilate via diboson channel Next-generation ν telescopes will provide crucial information complementary to other searches.

Neutrino telescopes are very versatile and adapt to different search channels

WIMP searches, Galactic Centre and Sun

- ANTARES has searched for dark-matter induced ν from the Galactic Centre using all-flavour data from 2007 → Feb. 2020. No dark matter. [Phys.Lett B 805, 135439 (2020)]
- Search for dark matter annihilations in the **Sun** with ANTARES in 2007-2019 data: no dark matter either.

Other dark matter models

• Search for heavy DM in secluded scenarios in ANTARES data [JCAP06(2022)028]

KM3NeT has already picked up. Search in 6-line configuration for existing lifetime.