

The DarkSide-20k TPC and Underground Argon Cryogenic System Tom Thorpe University of California – Los Angeles for the Global Agon Dark Matter Collaboration

Dual-Phase Argon Time Projection Chamber (TPC)

- Small gas pocket maintained above the liquid
- Higher electric field across gas pocket than liquid
- Electron recoil discrimination exploits the S1 time signature – Pulse Shape Discrimination (PSD)

-10

-30

-40

S1

50

100

Electron

recoil

150

t [µs]

S1

DARKSIDE

50

10/08/2022

100

Dual-Phase Argon Time Projection Chamber (TPC)

- Small gas pocket maintained above the liquid
- Higher electric field across gas pocket than liquid
- Electron recoil discrimination exploits the S1 time signature – Pulse Shape Discrimination (PSD)
- Electrons drift to the extraction region
- X and Y are determined by localizing S2 with the top photo detector array
- Z is reconstructed via the arrival time difference between S2 and S1 (t_{drift})
- 3d fiducialization can be done

10/08/2022

DARKSIDE

• Background suppression is powerful

DarkSide-20k Projections

Exposure: 200 t-y

- 20 t fiducial volume with 10 year run time
- 5 σ discovery: 2.1 x 10⁻⁴⁷ cm²
 @1 TeV/c²
- 90% C.L. exclusion: 6.3 x 10⁻⁴⁸ cm² @1 TeV/c²
- Sensitivity to neutrino inducedcoherent scattering (CEvNS):3.2 events

Instrumental Background

 0.1 background events over 200 t-y in the ROI (30-200 keV_{nr})

Electron Recoil Rejection

 Expect > 10⁸ discrimination using PSD with argon

10/08/2022

DARKSIDE

DarkSide-50 Underground Argon (UAr)

Industrial Scale Underground Argon (UAr)

Seruci-I Seruci-II

Production – URANIA – Cortez, CO, US

- Industrial scale extraction plant
- Extraction rate: 250-330 kg/day
- Production capability ≈ 120 t
 over two years for DS-20k
- UAr purity: 99.99%

Purification – ARIA – Sardinia, IT

Eur. Phys. J. C (2021) 81:359

- Seruci-0 (demonstrator) tested
- 350 m cryogenic distillation column
- O(1 tonne)/day capability
- Resulting UAr purity: 99.999%

DarkSide-20k Overview

- Dual-phase liquid argon (LAr) TPC
- Fiducial volume of ≈ 20 tonnes (≈ 100 tonnes total) of underground argon (UAr), depleted in ³⁹Ar
- Active neutron veto integrated into the TPC structure via gadolinium-loaded PMMA (acrylic)
- TPC and inner veto sealed inside a stainless steel single-walled vacuum vessel containing UAr
- Sophisticated silicon photomultiplier (SiPM) based photo detection (total area ≈ 26 m²)
- Vessel housed within an atmospheric argon (AAr) volume maintained by a membrane cryostat (ProtoDUNE-like)
- Outer veto will instrument the AAr volume
- UAr and AAr will use separate cryogenic systems
- To be deployed in Hall-C of INFN-LNGS
- Start of operations in 2026

Inner Detectors Cross Section

- Gd-loaded PMMA panels (green) provide the mechanical structure of the TPC
- Gadolinium provides a high cross section target for neutron capture
- Eight panels, held together with stainless steel brackets, will form the TPC "barrel"
- Reflector "cage" (gray) will be made out ESR foils mounted onto thin acrylic panels
- For the TPC volume, ESR as reflector and TPB as wavelength shifter
- Anode and cathode PMMA "windows" (pink) will be coated with Clevios[™] (blue) and TPB
- Stainless steel wire grid for extraction field
- For the neutron veto volume, ESR as reflector and PEN as wavelength shifter (teal)
- SiPM-based readout planes (optical planes) will use stainless steel frames to support the readout and the Gd-loaded PMMA endcaps

Major Components and Electric Fields

- Extraction (wire) grid will be placed between the TPC barrel and anode
- Remaining electric potentials will be defined using Clevios[™]
 - Field cage electrical connections are provided by Kapton[®] strips mounted with resistors
 - Four redundant connections will be made to each field cage ring
 - Ring geometry and coverage area optimized resulting in a highly uniform electric drift field
 - The wire grid is decoupled from the resistive divider to control the electric field uniformity
 - Nominal drift field of 200 V/cm (cathode operates at ≈ 73.4 kV)
 - Nominal electroluminesence field of 4.2 kV/cm

10/08/2022

DARKSIDE

DS-20k UAr Cryogenic System Overview

- System design based on DarkSide-50 system, which operated stably for over 8 years
- Safety: cooling uses liquid nitrogen (LN₂) and has a power failure operational mode built-in
- Operating costs: sophisticated network of heat exchangers realize a highly efficient system
- Condenser uses no active controls, but is coupled to the argon gas pressure which controls cooling
- Pressure in the gas pocket must be very stable for S2 uniformity, DS-50 maintained a pressure stability of +-0.1 mbar operating at 1080 mbar
- Design accounts radon removal and argon purification, which will happen in gaseous phase
- System designed with 10 kW of cooling power to accommodate experimental design changes
- Gas pocket and photo electronics will use \approx 2 kW
- Filling/emptying the UAr will require synchronization with the AAr system

DS-20k UAr Cryogenic System (Testbed @CERN)

- Getter and radon trap are not installed here
- Proof of concept and performance tests
- First tests performed in 2021 – 2022
- Large amount of cooling power from cold gas is recovered

10/08/2022

 Detector circulation verification

DARKSIDE

DS-20k UAr Cryogenic System (Testbed @CERN)

- Getter and radon trap are not installed here
- Proof of concept and performance tests
- First tests performed in 2021 – 2022
- Large amount of cooling power from cold gas is recovered

10/08/2022

Detector
 circulation
 verification

DARKSIDE

UAr Condenser – Core of the System

10/08/2022

DARKSIDE

Cooling Power Recovery Efficiency

- Fit nitrogen and argon flows over 6 hour runs at different pump speeds ٠
- Evaluate fits and plot nitrogen vs. argon flow •
- Average the values from the beginning and end of each run •

Average consumption = $0.0169 \text{ slpm N}_2 / \text{ slpm Ar}$

Cooling Power Recovery Efficiency

N₂ flow (slpm)

- Fit nitrogen and argon flows over 6 hour runs at different pump speeds
- Evaluate fits and plot nitrogen vs. argon flow
- Average the values from the beginning and end of each run
- Define 0% efficiency as cooling argon from room temperature and condensing (using only latent heat from N₂), i.e. $m(L+c\Delta T)_{Ar} = (mL)_{N2}$
- Zero N₂ consumption is 100% efficient (zero slope here)
- Scale our measured consumption (slope) value to defined scale
- Obtain **99.1%** cooling power recovery efficiency

10/08/2022

DARKSIDE

DS-20k Argon Circulation Concept

DARKSIDE

10/08/2022

Some considerations

- 1. Argon purification using a hot getter requires gaseous phase
- 2. Radon removal from argon is near 100% efficient in gaseous phase
- 3. Gas pocket is required for dual-phase TPC operation
- 4. Gaseous pumps are reliable and easy to maintain
 - 5. A highly efficient system requires lower liquid nitrogen consumption for a given cooling power
 - 6. During an emergency in an underground laboratory, electrical power may be interrupted and the supply of liquid nitrogen may become limited

Strategy

Design a safety-focused system to circulate in gaseous phase while allowing heat exchange over the entire temperature gradient from room temperature down to liquid temperature, returning the clean liquid to the bulk.

Argon Circulation Test

Argon Circulation Test

- One side of heat exchanger (inside cryostat) is filled with liquid from the bulk
 - Argon outlet (liquid/gas mixture from compressor) is routed through other side of heat exchanger
 - Pressure difference turns liquid/gas mixture into liquid
 - Heat is produced, boiling the liquid from the bulk

Argon Circulation Test Results

Summary

- DarkSide-20k: dual-phase time projection chamber (TPC)
- Low-radioactivity argon sourced from underground as target material
 - \approx 20 t fiducial volume; \approx 50 t TPC active volume; \approx 100 t total volume
- Gd-loaded PMMA panels will form the TPC mechanical structure (barrel)
 - PMMA (acrylic) = neutron moderator
 - Gadolinium (Gd) = neutron target material
- TPC design is in an advanced stage and assembly procedure is being finalized
- Underground argon (UAr) cryogenic system has been successfully tested and is being relocated to INFN-LNGS
- Mechanical mockup testing scheduled to take place at INFN-LNGS starting this year
 - Mechanical design integrity
 - High voltage
 - Gas pocket formation
 - Further cryogenic system operation will be involved