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How to explain the origin of Galactic CRs
Requirements

❖ Energetics:              
❖ Spectrum:                 

❖ Maximum energy:     
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∼ 1040 erg/s
Qinj ∝ E−2.3

Emax ,p ≳ 1015 eV
∼ 10−3@10 TeV
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How to explain the origin of Galactic CRs
Requirements

❖ Energetics:              
❖ Spectrum:                 

❖ Maximum energy:     
❖ Anisotropy:               
❖ Composition:   few anomalies w.r.t. Solar

∼ 1040 erg/s
Qinj ∝ E−2.3

Emax ,p ≳ 1015 eV
∼ 10−3@10 TeV

22Ne/20Ne ratio

Galactic 

CR sources

Sample of local ISM 

~4.6 Gyr ago

Sample of local 

ISM today

W.	R.	Binns	(2003)

https://izw1.caltech.edu/ACE/ACENews/ACENews74.html
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The most popular scenario: DSA@SNR shocks
❖ Why supernova remnant are so popular?

1.  Enough power to sustain the CR flux:

2.  Enough sources to explain anisotropy:

4.  A well developed theory for particle acceleration: DSA

5.  Observations show the presence of non thermal particles  

N( < d, E) ∼ RSN (d /Rd)2 τesc(E) =
1

100yr ( 5kpc
15kpc )

2

2 Myr ≃ 7000

PCR ∼
UCRVCR

τesc(1 GeV)
∼ 1040 erg

PSN ∼ RSNESN ∼ 3 × 1041 RSN

(100 yr)−1

ESN

1051erg
erg/s

PCR ≃ 1 − 10 % PSN
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The most popular scenario: DSA@SNR shocks
❖ Why supernova remnant are so popular?

1.  Enough power to sustain the CR flux:

2.  Enough sources to explain anisotropy:

4.  A well developed theory for particle acceleration: DSA

5.  Observations show the presence of non thermal particles  

❖ However
- No evidence of acceleration beyond ~ 100 TeV even in very young SNRs
- From theory only very powerful and rare SNRs can reach PeV
- Anomalous CR composition cannot be easily explained
- Spectral anomalies (p, He, CNO have different slopes)

-

N( < d, E) ∼ RSN (d /Rd)2 τesc(E) =
1

100yr ( 5kpc
15kpc )

2

2 Myr ≃ 7000

PCR ∼
UCRVCR

τesc(1 GeV)
∼ 1040 erg

PSN ∼ RSNESN ∼ 3 × 1041 RSN

(100 yr)−1

ESN

1051erg
erg/s

PCR ≃ 1 − 10 % PSN



G. Morlino, TeVPA 2022

Maximum energy at SNR shocks
Maximum	energy	can	only	increase	during	the	ejecta	dominated	phase

Rsh ∝ t4/7

Rsh ∝ t2/5
Shock	radius

ejecta-dominated

Sedov-Taylor	phase{
During	the	ST	phase	the	highest	energy	particles	cannot	be	reached	by	
the	shock	and	escape	towards	upstream

But	particle	diffuse	ahead	of	the	shock:	d ∝ D t

Emax ∼ ( q
c ) BshushRsh Hillas	criterium



G. Morlino, TeVPA 2022

Maximum energy at SNR shocks
Maximum	energy	can	only	increase	during	the	ejecta	dominated	phase

Rsh ∝ t4/7

Rsh ∝ t2/5
Shock	radius

ejecta-dominated

Sedov-Taylor	phase{
During	the	ST	phase	the	highest	energy	particles	cannot	be	reached	by	
the	shock	and	escape	towards	upstream

But	particle	diffuse	ahead	of	the	shock:	d ∝ D t

Emax ∼ ( q
c ) BshushRsh

Emax ≃ 5 × 1013ℱ(kmax)( B0

μG ) (
Mej

M⊙ )
−1/6

( ESN

1051 erg )
1/2

( nism

cm−3 )
−1/3

eV
Maximum	energy	obtained		
from	the	condition	tacc = tST

	is	weakly	dependent	on	all	parameters	but	the	magnetic	fieldEmax

PeV	energies	requires	ℱ = ( δBk

B )
2

≫ 1 Need	of	magnetic	field	amplification

Hillas	criterium
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How to amplify the magnetic field
• In the regular ISM turbulence is injected by SNR and stellar winds:

• Kolmogorov power spectrum

• Injection scale

• Total power in turbulence

• Proposed magnetic field amplification mechanisms:

• Resonant streaming instability [Skilling (1975)]   

• MHD instability due to density perturbation [Giacalone & Jokipii (2007)]

• Acoustic instability [Drury & Falle (1983)]

• Non-resonant streaming instability [Bell (2004)]

ℱ(k) = k
⟨δB(k)⟩2

B2
0

=
2
3

ηB (Lturk)−2/3

Ltur ∼ 10 − 100 pc

ηB ∼ 0.01 − 0.1

ℱ (1/rL (1PeV)) ∼ 10−3

Electron	density	fluctuation	in	the	ISM	
[Armstrong	et	al.(1995)	ApJ	443,	209]

ℱ ≲ 1

ℱ ≳ 1

	
in	realistic	conditions

ℱ ∼ 1}

Emax ∼ few GeV

For	reviews	see:			Drury	(1994);		Blasi	(2013,	2019);		Gabici	et	al	(2019)



G. Morlino, TeVPA 2022

Only very young CC SNR can accelerate to PeV
Shure	&	Bell	(2013)

PeV energies can be reached:
• Only by core-collapse SN expanding into dense environment (slow and dense progenitor’s wind)

• During the very early phase (age  years)≲ 50

B2
sat

B2
0

∼
UCR

UB0

vd

c
∝ n0vsh

Type II Type Ia

Efficient	amplification	requires:	
- large	densities		
- large	shock	speed

1	PeV

Sc
hu

re
 &

 B
el

l (
20

13
)

Magnetic	field		
at	saturation	
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Accounting for SNR evolution and CR propagation
Cristofari,	Blasi	&	Amato	(2020)

Type Ia II II*

Mej [MSol] 1.4 5 1

ESN [1051 erg] 1 1 10

Mwind [10-5 MSol/yr] — 1 10

vwind [10 km/s] — 1 1

r1 [pc] — 1.5 1.3

Parameters	for	different	type	of	SNRs
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Accounting for SNR evolution and CR propagation
Cristofari,	Blasi	&	Amato	(2020)

Rate =
1

100 yr
; ξCR = 0.1

Confined	particles
Particles	escaping		
during	the	acceleration

COMPARISON	WITH	THE	CR	SPECTRUM	
DETECTED	AT	THE	EARTH

Type Ia II II*

Mej [MSol] 1.4 5 1

ESN [1051 erg] 1 1 10

Mwind [10-5 MSol/yr] — 1 10

vwind [10 km/s]rr — 1 1

r1 [pc] — 1.5 1.3

Parameters	for	different	type	of	SNRs
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Accounting for SNR evolution and CR propagation
Cristofari,	Blasi	&	Amato	(2020)

COMPARISON	WITH	THE	CR	SPECTRUM	
DETECTED	AT	THE	EARTH

Type Ia II II*

Mej [MSol] 1.4 5 1

ESN [1051 erg] 1 1 10

Mwind [10-5 MSol/yr] — 1 10

vwind [10 km/s]rr — 1 1

r1 [pc] — 1.5 1.3

Parameters	for	different	type	of	SNRs

Rate =
2

100 yr
; ξCR = 0.06
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Accounting for SNR evolution and CR propagation
Cristofari,	Blasi	&	Amato	(2020)

COMPARISON	WITH	THE	CR	SPECTRUM	
DETECTED	AT	THE	EARTH

Type Ia II II*

Mej [MSol] 1.4 5 1

ESN [1051 erg] 1 1 10

Mwind [10-5 MSol/yr] — 1 10

vwind [10 km/s]rr — 1 1

r1 [pc] — 1.5 1.3

Parameters	for	different	type	of	SNRs

Rate =
3

10000 yr
; ξCR = 0.1
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Accounting for SNR evolution and CR propagation
Cristofari,	Blasi	&	Amato	(2020)

COMPARISON	WITH	THE	CR	SPECTRUM	
DETECTED	AT	THE	EARTH

Type Ia II II*

Mej [MSol] 1.4 5 1

ESN [1051 erg] 1 1 10

Mwind [10-5 MSol/yr] — 1 10

vwind [10 km/s]rr — 1 1

r1 [pc] — 1.5 1.3

Parameters	for	different	type	of	SNRs

Rate =
3

10000 yr
; ξCR = 0.1

No	room	for	other	SNRs
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Accounting for SNR evolution and CR propagation
Cristofari,	Blasi	&	Amato	(2020)

COMPARISON	WITH	THE	CR	SPECTRUM	
DETECTED	AT	THE	EARTH

Type Ia II II*

Mej [MSol] 1.4 5 1

ESN [1051 erg] 1 1 10

Mwind [10-5 MSol/yr] — 1 10

vwind [10 km/s]rr — 1 1

r1 [pc] — 1.5 1.3

Parameters	for	different	type	of	SNRs

Rate =
3

10000 yr
; ξCR = 0.1

No	room	for	other	SNRs

If	only	Tipe	II*	are	PeVatrons	
probability	to	detect⇒ ∼ 0
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Stellar winds vs. SNRs

forward shock

(strong)

reverse 

shock

contact 

discontinuity

SNR

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)

Burst 

explosion
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Stellar winds vs. SNRs

forward shock (weak) wind termination 

shock (strong)

contact 
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forward shock

(strong)

reverse 

shock

contact 

discontinuity

SNR Wind-blown bubble

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)

Weaver	&	McCray,		
ApJ	218	(1977)

Burst 

explosion

Continuous 

injection
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Stellar winds vs. SNRs

forward shock (weak) wind termination 

shock (strong)

contact 

discontinuity

forward shock

(strong)

reverse 

shock

contact 

discontinuity

SNR Wind-blown bubble

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)

age VFS [km/s] RFS [pc] VRS [km/s] RRS [pc]

SNR kyr > 5000 < 1 < 3000 < 1

Wind 
bubble Myr 10 - 20 50-100 < 3000 1-10

Forward shock Reverse shock

Weaver	&	McCray,		
ApJ	218	(1977)

Burst 

explosion

Continuous 

injection
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Stellar winds vs. SNRs

forward shock (weak) wind termination 

shock (strong)

contact 

discontinuity

forward shock

(strong)

reverse 

shock

contact 

discontinuity

SNR Wind-blown bubble

main acceleration site

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)

The geometry is reversed
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Stellar winds vs. SNRs

forward shock (weak) wind termination 

shock (strong)

contact 

discontinuity

forward shock

(strong)

reverse 

shock

contact 

discontinuity

SNR Wind-blown bubble

main acceleration site

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)

The geometry is reversed

ACCELERATED MATERIALCircumstellar medium Wind material

Bonus: massive star winds are enriched in 22Ne 

-> possibility to solve the 22Ne/20Ne anomaly

Burst 

explosion

Continuous 

injection
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Stellar winds vs. SNRs

forward shock (weak) wind termination 

shock (strong)

contact 

discontinuity

forward shock

(strong)

reverse 

shock

contact 

discontinuity

SNR Wind-blown bubble

main acceleration site

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)

The geometry is reversed

ACCELERATED MATERIALCircumstellar medium Wind material

MAGNETIC FIELDSelf-generated by 

accelerated particles

Amplified by MHD 

turbulence in the wind

Bonus: massive star winds are enriched in 22Ne 

-> possibility to solve the 22Ne/20Ne anomaly

Burst 

explosion

Continuous 

injection
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Maximum energy: first order estimate

Hillas criterium Emax ∼ ( q
c ) BshushRsh

dM/dt 
Msol/yr

ush 

km/s
Rsh

pc
B

µG
age
yr lim Emax

Emax

TeV

SNR — > 5000 < 1 ~100
self-amplification

~103 time 
limited ~10-100

WTS 
(single star) 10-6 < 3000 ~ 1 ~ 1

MHD turbulence
~106 space 

limited ~ 10

WTS 
(massive cluster) 10-4 < 3000 > 10 > 10

MHD turbulence
~106 space 

limited ~> 1000

For massive star cluster ( ) PeV energies can  be reached≳ 104 M⊙
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Maximum energy: a more detailed analysis

fs(p) = s
ηinj n1

4π p3
inj ( p

pinj )
−s

e−Γ1(p) e−Γ2(p)

GM,	Blasi,	Peretti	&	Cristofari	(2019)

Solution of diffusive shock acceleration in spherical geometry
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Maximum energy: a more detailed analysis

fs(p) = s
ηinj n1

4π p3
inj ( p

pinj )
−s

e−Γ1(p) e−Γ2(p)

s =
3u1

u1 − u2

GM,	Blasi,	Peretti	&	Cristofari	(2019)

Solution of diffusive shock acceleration in spherical geometry

Standard power-law 
for plane shocks
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Maximum energy: a more detailed analysis

fs(p) = s
ηinj n1

4π p3
inj ( p

pinj )
−s

e−Γ1(p) e−Γ2(p)

s =
3u1

u1 − u2

GM,	Blasi,	Peretti	&	Cristofari	(2019)

Solution of diffusive shock acceleration in spherical geometry

Standard power-law 
for plane shocks

 Maximum energy due to confinement in the upstream:
the effective plasma speed  decreased reducing the energy gain
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Maximum energy: a more detailed analysis

fs(p) = s
ηinj n1

4π p3
inj ( p

pinj )
−s

e−Γ1(p) e−Γ2(p)

s =
3u1

u1 − u2

GM,	Blasi,	Peretti	&	Cristofari	(2019)

Solution of diffusive shock acceleration in spherical geometry

 Maximum energy due to confinement in the upstream:
the effective plasma speed  decreased reducing the energy gain

Maximum energy due 
to escaping from
the downstream

Standard power-law 
for plane shocks
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Maximum energy: a more detailed analysis

fs(p) = s
ηinj n1

4π p3
inj ( p

pinj )
−s

e−Γ1(p) e−Γ2(p)Standard power-law 
for plane shocks

s =
3u1

u1 − u2

GM,	Blasi,	Peretti	&	Cristofari	(2019)

Solution of diffusive shock acceleration in spherical geometry

 Maximum energy due to confinement in the upstream:
the effective plasma speed  decreased reducing the energy gain

Maximum energy due 
to escaping from
the downstream

The diffusion coefficient has a strong impact on the 
cutoff shape and effective maximum energy

Bohm

Kraichnan

Kolmogorov

0.1 1 10 100 1000 104
10-4

0.001

0.010

0.100

1

p [TeV/c]

ps
f 1
(�
,p
)

·M = 10−4 M⊙ yr−1

vw = 3000 km/s
LCR = 0.1 Lw

ηB = 0.01

Typical values for 
massive stellar 

clusters

ps f(p) at the termination shock
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Maximum energy: a more detailed analysis

fs(p) = s
ηinj n1

4π p3
inj ( p

pinj )
−s

e−Γ1(p) e−Γ2(p)Standard power-law 
for plane shocks

s =
3u1

u1 − u2

GM,	Blasi,	Peretti	&	Cristofari	(2019)

Solution of diffusive shock acceleration in spherical geometry

 Maximum energy due to confinement in the upstream:
the effective plasma speed  decreased reducing the energy gain

Maximum energy due 
to escaping from
the downstream

The diffusion coefficient has a strong impact on the 
cutoff shape and effective maximum energy

Bohm

Kraichnan

Kolmogorov

0.1 1 10 100 1000 104
10-4

0.001

0.010

0.100

1

p [TeV/c]

ps
f 1
(�
,p
)

·M = 10−4 M⊙ yr−1

vw = 3000 km/s
LCR = 0.1 Lw

ηB = 0.01

Typical values for 
massive stellar 

clusters

ps f(p) at the termination shock

PeV energies can be reached in very powerful 

stellar clusters if the diffusion is close to Bohm
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Cluster compactness
[Gupta, Nath, Sharma & Eichler, MNRAS 2020]

Compact cluster Loose cluster

WTS no WTS

A WTS is generated if the cluster is compact enough, such that  Rcluster ≪ Rts
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Cluster compactness
[Gupta, Nath, Sharma & Eichler, MNRAS 2020]

Compact cluster Loose cluster

WTS no WTS

A WTS is generated if the cluster is compact enough, such that  Rcluster ≪ Rts

Acceleration by 

collective WTS

Acceleration may be due to 

-> single stars WTS


-> wind-wind collisions
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The energy problem

·Mwinduwind ≈ η
L⋆

c
∝ M3

⋆

Stellar wind are radiation drive

Momentum carried 

by the wind

Momentum carried 

by starlight

Total wind power dominated 

by most massive stars

∫ Pwind dt ≃ 1051 erg ∼ ESN

uwind ∝ M1/2
⋆

Pwind =
1
2

·Mwindu2
wind ∝ M4

⋆

For the most massive stars:

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)
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The energy problem

·Mwinduwind ≈ η
L⋆

c
∝ M3

⋆

Stellar wind are radiation drive

Momentum carried 

by the wind

Momentum carried 

by starlight

Total wind power dominated 

by most massive stars

∫ Pwind dt ≃ 1051 erg ∼ ESN

Very steep mass-luminosity scaling

dN
/d

M
⋆

8M⊙ M⋆

SNe stellar 

winds

uwind ∝ M1/2
⋆

Pwind =
1
2

·Mwindu2
wind ∝ M4

⋆

For the most massive stars:

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)
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The energy problem

·Mwinduwind ≈ η
L⋆

c
∝ M3

⋆

Stellar wind are radiation drive

Momentum carried 

by the wind

Momentum carried 

by starlight

Total wind power dominated 

by most massive stars

∫ Pwind dt ≃ 1051 erg ∼ ESN

Very steep mass-luminosity scaling

dN
/d

M
⋆

8M⊙ M⋆

SNe stellar 

winds

uwind ∝ M1/2
⋆

Pwind =
1
2

·Mwindu2
wind ∝ M4

⋆

For the most massive stars:

❖ Supernovae win by a factor ~ 10 
    [Caveat: failed supernovae]

❖ Stellar winds may be subdominant but 
dominate the maximum energies

Cassé	&	Paul	(1980,	1982)	—	Cesarsky	&	Montmerle	(1983)
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Young  vs.  old clusters

M/M⊙

yr

[A. Buzzoni (2002)]

Star’s lifetime

   only stellar windt ≲ 3 Myr    stellar wind + SNet ≳ 3 Myr
forward shock

wind

termination 

shock forward 


shock

overlapping 

SNRs

https://arxiv.org/abs/astro-ph/0202419v2
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Young  vs.  old clusters

M/M⊙

yr

[A. Buzzoni (2002)]

Star’s lifetime

   only stellar windt ≲ 3 Myr    stellar wind + SNet ≳ 3 Myr
forward shock

wind

termination 

shock forward 


shock

overlapping 

SNRs

Vieu et al. (2022)

wind power

total power

https://arxiv.org/abs/astro-ph/0202419v2
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Particle acceleration in super-bubbles: intermittency
Vieu et al. (2022): consider acceleration at WTS + SNR forward shock + turbulent 
acceleration

CR energy density inside 

a super-bubble

N⋆ = 100 ηT = 1 %

N⋆ = 100
N⋆ = 500
N⋆ = 1000
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Particle acceleration in super-bubbles: intermittency

N⋆ = 100 ηT = 1 %

N⋆ = 100
N⋆ = 500
N⋆ = 1000

CR Spectrum

❖ Energetically Superbubble may produce the bulk of CRs
❖ The spectrum is not universal -> strong intermittency

CR energy density inside 

a super-bubble

Vieu et al. (2022): consider acceleration at WTS + SNR forward shock + turbulent 
acceleration

Time in Myr
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YSCs detected in gamma-rays
Recently several massive star clusters have been associated with gamma-ray sources

Name log M/Msun rc/pc D/kpc age/Myr
Lw/

1038 erg s-1 Reference

Westerlund 1 4.6 ± 0.045 1.5 4 4-6 10 Abramowski A., et al., 
2012, A&A, 537, A114

Westerlund 2 4.56 ±0.035 1.1 2.8 ± 0.4 1.5-2.5 2 Yang, de Oña Wilhelmi, 
Aharonian, 2018, A&A, 
611, A77 

Cyg. OB2 4.7±0.3 5.2 1.4 3-6 2 Ackermann M., et al. 2011, 
Science, 334, 1103

NGC 3603 4.1 ± 0.10 1.1 6.9 2-3 ? Saha, L. et al 2020, ApJ, 
897, 131 

BDS 2003 4.39 0.2 4 1 ? Albert A., et al., 2020, 
arXiv:2012.15275

W40 2.5 0.44 0.44 1.5 ? Sun, X.-N. et al. 2020, 
A&A, 639, A80

30 Dor (LMC)
NGC 2070/RCM 136

4.8-5.7
4.34-5

multiple 
sub-clusters 50 1

5 ? H. E. S. S. Collaboration et 
al., 2015, Science, 347, 406
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YSCs detected in gamma-rays

Westerlund 1

HESS coll. A&A (2022)

W40 - FermiLAT data from

Sun et al. (2020) arxiv:2006.00879

Cygnus Cocoon FermiLAT - Ackermann et al. (2011)

Cygnus Cocoon 

HAWC coll. Nat. Astr.(2020)
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YSCs detected in gamma-rays
Some clusters show similar spectra and radial profile

[Aharonian, Yang & Wilhelmi, Nat. Astr. (2019)]

Spectrum Radial CR profile

Similar spectra ∼ E−2.2

1/r scaling: 

CR diffusive escape from 

continuous point source? 
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YSCs detected in gamma-rays
Some clusters show similar spectra and radial profile

[Aharonian, Yang & Wilhelmi, Nat. Astr. (2019)]

Spectrum Radial CR profile

Similar spectra ∼ E−2.2

1/r scaling: 

CR diffusive escape from 

continuous point source? 

Westerlund 1

HESS coll. A&A (2022)
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Possible role of YSC in the Galactic Center
The Galactic Centre has been recognised as a PeVatron

❖ Minimum proton energy > 0.4 PeV

❖ Spatial profile compatible with continuous emission 

➡ SNR disfavoured

❖ CR luminosity:  
(could be supplied by a powerful cluster wind if diffusion is suppressed)

❖ Stellar clusters in the GC region:
• Arches (~30 pc from Sgr A*, Mass~ , age ~ 2.5 Myr)
• Quintuplet (~30 pc from Sgr A*, Mass~ , age ~ 4 Myr)
• Central cluster (~200 young stars at  from Sgr A* including ~30 WR stars) [e.g. von 

Fellenberg et al. (2022) and Poumard T. (2008)]

LCR( > 10 TeV) = 4 × 1037 (D/1030 cm2s−1) erg/s

104M⊙
104M⊙

r ≲ 1 pc

Spectrum

Spatial profile

[H.E.S.S. coll., Abramowski et al. Nat. 531 (2016)]

60x60 pc

https://ui.adsabs.harvard.edu/abs/2022ApJ...932L...6V/abstract
https://ui.adsabs.harvard.edu/abs/2022ApJ...932L...6V/abstract
https://ui.adsabs.harvard.edu/abs/2008JPhCS.131a2009P/abstract
https://ui.adsabs.harvard.edu/abs/2016Natur.531..476H/abstract
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How many Star Clusters?

‣ 		Age	<	10	Myr	
‣ 		 	

‣ 		total	number	of	SC	in	the	Galaxy	 	
‣ 		SCs	within	2	kpc	from	the	Sun 	

Present	number	of	clusters	detected	in	gamma-
rays 	

100 M⊙ < Mass < 6 × 104 M⊙

≈ 1000
≃ 70

∼ 10

Synthetic realisation of Stellar cluster population

Rbubble ≃ 2.9∘ ( Lw

2 × 1038 erg/s )
1/5

( n0

10 cm−3 )
−1/5

( tage

1 Myr )
3/5

( d
2 kpc )

Bubble size ~ degree  diffuse sources with low surface brightness  difficult to detect⇒ ⇒

Weaver	&	McCray,		
ApJ	218	(1977)
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How many Star Clusters?

Surface brightness

Some	bubbles	disappear	when	plotted	against	their	surface	brightness

Bubble	size	in	the	sky	from	the	entire	population	of	SC	in	galactic	coordinates:
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How many Star Clusters?
Bubble	size	in	the	sky	from	the	entire	population	of	SC	in	galactic	coordinates:

Detection can be improved looking for gamma-ray 

emission from molecular clouds embedded into wind bubbles

Surface brightness

Some	bubbles	disappear	when	plotted	against	their	surface	brightness
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❖ Young stellar clusters are promising gamma ray sources

❖ YSC can significantly contribute to Galactic CRs

❖ Maximum energies can reach ~PeV (but strong dependence on 
diffusion)

❖ Super-bubbles (= older SCs with stellar winds+ SNRs) may be the major 
contributors of Galactic CRs (but theoretical models still incomplete)

❖ Next generation IACT will probably detect many new stellar clusters 
(~several tens)  (but extended sources with low surface brightness)

❖ Observational strategy: look for gamma-ray emission from molecular 
clouds close to stellar clusters

Conclusions
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Backup slides
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The case of Cygnus Cocoon

Assumed properties

✤ Wind luminosity 

✤ Ejecta mass ; 

✤ wind speed 

✤ Cluster age 

✤ Average ISM density 

≃ 2 × 1038 erg s−1

·M ≃ 10−4M⊙ yr−1

vw ≃ 2300 kms−1

≃ 3 Myr

≃ 10 cm−3

Blue: 500µm emission: cold dust

Radio emission at 1.5 GHz

Estimated size of the bubble  90 pc≃

Termination shock radius  13  pc≃

Red: 8 µm emission: warm dust

[S. Menchiari et al. in preparation]
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The case of Cygnus Cocoon
[S. Menchiari et al. in preparation]

Model Kolmogorov Kraichnan Bohm
Wind luminosity 5x1039 erg s-1 1.3x1039 erg s-1 2x1037 erg s-1

Acc. efficiency 0.4% 0.7% 13%
Slope 4.17 4.23 4.27
Emax 23 PeV 4 PeV 0.5 PeV

Kolmogorov Kraichnan Bohm

The most realistic scenario is something in between Bohm and Kraichnan

Unrealistically high
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The case of Cygnus Cocoon
[S. Menchiari et al. in preparation]

Kraichnan case

Some caveats:
❖ Different analysis of Fermi-LAT data 

gives different results 
❖  In comparing different experiments we 

need to correctly account for the different 
extraction area

❖  LHAASO data-point is not used for the 
fit because the extraction area is not 
specified
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Gas and photons distribution
[S. Menchiari et al. in preparation]

Photon background is dominated by 
IR radiation Star-light form Cyg. OB2 
is negligibleGas distribution from CO map 
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CR radial profile
[S. Menchiari et al. in preparation]

KraichnanKolmogorov Bohm

The harder is the diffusion coefficient the flatter is the CR distribution


