Gluon distribution in the nucleon from Lattice QCD

Gluon distributions and lattice QCD

 Gluon PDF is less explored in LQCD calculations and there is difference between PDF fits

de Teramond, Dosch, Liu, *RSS*, Brodsky, Deur PRD 2021

Origin of proton spin : A BIG question

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + \Delta G(\mu) + L_{Q+G}(\mu)$$

 Gluon contribution to proton spin is not well-constrained from experiment

Gluon distribution in Pseudo-PDF approach

On the lattice, calculate spatial correlation in coordinate space

$$M_{\mu lpha; \lambda eta}(z,p) \equiv \langle p | G_{\mu lpha}(z) \, [z,0] \, G_{\lambda eta}(0) | p
angle$$
 X. Ji [PRL 2013]

- "Pseudo-PDF" formalism: Based on coordinate-space factorization

 Radyushkin [PLB 2017]

Reduced Ioffe-time distribution

Radyushkin [PLB 2017] Orginos, et al [PRD 2017] Joo, et al [JHEP 2019]

▶ Ioffe time, $\nu=p_zz$ (convention from Braun, et al [PRD 1995])

Gluon distribution in Pseudo-PDF approach

To determine unpolarized gluon distribution

$$M_{0i;i0} = \langle p | G_{0i}(z) [z, 0] G_{i0}(0) | p \rangle = 2 p_0^2 \mathcal{M}_{pp} + 2 \mathcal{M}_{gg}$$

$$M_{ji;ij} = -2\mathcal{M}_{gg}$$
 $\underline{i,j \to x,y}$

$$M_{0i;i0} + M_{ji;ij} = 2p_0^2 \mathcal{M}_{pp}$$

Combination is multiplicatively renormalizable

Balitsky, et al [PLB 2020]

Also see Zhang, et al [PRL 2019] & Li, et al [PRL 2019]

After renormalization and perturbative matching

$$\mathcal{M}_{pp}(\nu, z^2) \rightarrow \mathcal{I}_g(\nu, \mu^2) = \int_0^1 dx \cos(x\nu) \frac{x g(x, \mu^2)}{x}$$

Lattice QCD calculation

2+1 flavor clover Wilson fermions

- Lattice size, $L \times T = 32^3 \times 64$
- Lattice spacing, $a \approx 0.094$ fm
- Pion mass, $m_{\pi}=358~{\rm MeV}$
- 349 configurations

1899 configurations

Special features: optimized operators and nucleon correlator

Nucleon correlation function using "Distillation"

Peardon, et al [PRD 2009]

- Distillation: low rank approximation of gauge covariant smearing kernel - increases operator state overlaps onto low-lying modes
- Elementals encode the choice of nucleon operator [7-9 operators]
- Perambulators encode quark propagation

Features of this calculation

Basis of operators (positive/negative parity, hybrid, higher spin)

Gluonic operator using "Wilson flow"

M. Luscher, JHEP 2010

- ▶ Flow of gauge field, $B_{\mu}(\tau, x_{\mu})$ so that $B_{\mu}|_{\tau=0} = A_{\mu}$
- Diffusion length in x is $\sqrt{8\tau}$ $(\tau \sim a^2)$

Extraction of matrix elements

- Correlation matrix analysis using variational technique
 - > System of generalized eigenvalue equations for correlation matrix
 - > Orthogonality conditions on the eigenvectors of different states

Difficult to distinguish degenerate states by their time-dependence alone

- Use summed generalized eigenvalue problem (sGEVP)
 - $ightharpoonup C \exp(-\Delta E t/2)$ (GEVP)
 - $ightharpoonup Dt\exp(-\Delta Et)$ (sGEVP)

J. Bulava, et al, JHEP 2012

$$\mathcal{M}_{nn}^{\text{eff}}(t,t_0) = \mathcal{M}_{nn} + \mathcal{O}(\Delta E_{N+1,n} t \exp(-\Delta E_{N+1,n} t))$$

Lattice QCD matrix elements

Simultaneous correlated fit to matrix elements for all (fixed momentum & gradient flow)

$$\mathcal{M}^{\text{eff}}(t)_i = A_i + B_i t \exp(-\Delta E t)$$

Lattice QCD rITD as a function of flow time

$$\blacksquare \textbf{ Reduced ITD:} \quad \mathfrak{M}(\nu,z^2) = \left(\frac{\mathcal{M}(\nu,z^2)}{\mathcal{M}(\nu,0)|_{z=0}}\right) / \left(\frac{\mathcal{M}(0,z^2)|_{p=0}}{\mathcal{M}(0,0)|_{p=0,z=0}}\right)$$

 ν

$$p=2.46\,\mathrm{GeV}$$

Before ratio, SNR = 6.5

After ratio, SNR = 12.1

Flow time dependence is minimized in the double ratio

Zero flow time extrapolation of rITD (examples)

For fixed p & z, fit forms: $A + B\tau$, $A + B\tau + C\tau^2$, etc.

Ioffe time distribution in the zero flow time limit

Unpolarized gluon pseudo-ITD

Some phenomenology

Fit NNPDF3.1 gluon PDF using ansatz

$$xg^{+}(x) = x^{\alpha} \left[A(1-x)^{4+\beta} + B(1-x)^{5+\beta} \right] \times (1+\gamma\sqrt{x}+\delta x)$$
$$xg^{-}(x) = x^{\alpha} \left[A(1-x)^{6+\beta} + B(1-x)^{7+\beta} \right] \times (1+\gamma\sqrt{x}+\delta x)$$

$$xg(x) \equiv xg^{+}(x) + xg^{-}(x)$$
$$x\Delta g(x) \equiv xg^{+}(x) - xg^{-}(x)$$

Brodsky, Burkardt, Schmidt [NPB 95]

RSS, Liu, Paul PRD 2021

Asymptotic form:

$$\mathcal{M}(\omega, \mu^2) = A \left[\left(C_R(\alpha, 4 + \beta; \omega) + \gamma C_R(\alpha + 1/2, 4 + \beta; \omega) + \delta C_R(\alpha + 1, 4 + \beta; \omega) \right) + \left(\beta \to \beta + 2 \right) \right] + B \left[\beta \to \beta + 1 \right] + \mathcal{O}(1/\omega^{a+R+1})$$

From pseudo-distribution to light-cone distribution

PDF fits

$$\mathfrak{M}(\nu, z^2) = \int_0^1 dx \, \mathcal{K}(x\nu, \mu^2 z^2) \, \frac{x^\alpha \, (1-x)^\beta}{B(\alpha+1, \beta+1)}$$

- + correction to 2-parameter form
- + discretization error

Karpie, et al [arXiv:2105.13313]

Perturbative matching Balitsky, et al [PLB 2020]

Talk by Nikhil Karthik
@ LaMET2021

Determination of unpolarized gluon distribution

Unpolarized gluon distribution in the nucleon from lattice quantum chromodynamics

Tanjib Khan[®], Raza Sabbir Sufian[®], Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, and Savvas Zafeiropoulos

(On behalf of the *HadStruc Collaboration*)

Towards determining gluon helicity distribution

For gluon helicity distribution

$$\Delta \mathcal{M}_{\mu\alpha;\lambda\beta}(z,p) \equiv < p, s | G_{\mu\alpha}(z)[z,0] \widetilde{G}_{\lambda\beta}(0) | p, s >$$

To determine polarized gluon Ioffe-time distribution

Lattice
$$\Delta \mathcal{M}_{0i;0i} + \Delta \mathcal{M}_{ij;ij} = -2p_0p_z \left[\Delta \mathcal{M}_{ps} - (1 + m_N^2/p_z^2) \nu \Delta \mathcal{M}_{pp} \right]$$

$$[\Delta \mathcal{M}_{ps} - \nu \, \Delta \mathcal{M}_{pp}](\nu, \mu^2) = \int_0^1 dx \, x \, \Delta g(x) \sin(x\nu)$$

Balitsky, et al <u>2112.02011</u>

Lattice QCD matrix elements with 1899 cofigs

Simultaneous correlated fit to matrix elements for all z ($p=0.41\,{\rm GeV}$ & gradient flow $\tau=2.2$)

$$\Delta \mathcal{M}^{\text{eff}}(t)_i = A_i + B_i t \exp(-\Delta E t)$$

Lattice QCD matrix elements with 1899 cofigs

Prospect of Lattice QCD on gluon helicity distribution

Gluon helicity from light cone Ioff-time distribution

$$\Delta G(\mu^2) = \int_0^\infty d\nu \ \Delta \mathcal{M}_{\text{light-cone}}(\nu, \mu^2)$$

 LQCD determination of polarized gluon ITD, even at small Ioffe-time window can have important impact

Summary & Outlook

- In progress: unpolarized gluon distribution with 5 times stats
- Future consideration: mixing of quark-gluon operator
- Calculation of gluon helicity ITD
- Challenge: many systematics to be understood