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Gluon distributions and lattice QCD
Gluon PDF is less explored in LQCD calculations and there is  
difference between PDF fits 

2

Gluon contribution to proton spin is  
not well-constrained from experiment

Origin of proton spin : A BIG question
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64 7.1. GLOBAL PROPERTIES AND PARTON STRUCTURE OF HADRONS

Figure 7.11: Correlation (upper panel) and sensitivity (lower panel) coefficients between the
gluon helicity distribution Dg(x, Q2) and the (photon-nucleon) double-spin asymmetry A1,
as well as between the quark-singlet distribution DS(x, Q2) and A1, as a function of {x, Q2}.
The lighter blue and darker blue circles represent the values of the correlation (sensitivity)
coefficient for

p
s = 45 GeV and 140 GeV, respectively. In all the cases the size of the circles

is proportional to the value of the correlation (sensitivity) coefficient.
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Figure 7.12: Impact of the projected EIC ALL pseudoda on the gluon helicity (left panel)
and quark singlet helicity (right panel) distributions as a function of x for Q2 = 10 GeV2.
In addition to the DSSV14 estimate (light-blue), the uncertainty bands resulting from the fit
including the

p
s = 45 GeV DIS pseudodata (blue) and, subsequently, the reweighting withp

s = 140 GeV pseudodata (dark blue), are also shown.

the impact of the extrapolation region, three sets of pseudodata were generated by
shifting the unmeasured region at low x with ±1s confidence level, using existing
helicity PDF uncertainties as well as the central predictions.

In Fig. 7.13 the uncertainty bands for gp
1 before and after the three scenarios (±1s

confidence level and central) at the EIC are shown, along with the ratios dEIC/d
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FIG. 2. Comparison of the gluon distribution in the proton
(up) and pion (down) with global fits. The red bands indicate
the theoretical uncertainty from the initial scale µ0 and the
the gluon coe�cient c⌧ from the momentum sum rule.

are compared in Fig. 2 with global analyses of gluon
PDFs [82, 85, 86]. Contributions from higher Fock
states are expected to be suppressed at large x and may
a↵ect the overall normalization through the momentum
sum rule, thus suppressing the gluon distribution at
large x while enhancing the distribution at small x. Our
nonperturbative results fallo↵ as (1�x)5 at large x from
the leading twist-four term in (19). In contrast, the
perturbative QCD results incorporate a (1 � x)4 fallo↵
from hard gluon transfer to the spectator quarks [87].

Incorporating the universality of our approach, we now
compute the gluon distribution in the pion. Similar to the
case of the proton, we only consider the lowest ⌧ = 3 Fock
state |ud̄gi with one constituent gluon. The coupling of
the Pomeron to the hadrons depends on the vertex, but
the trajectory ↵P (t) (1) is the same and unique to the
Pomeron. Considering the valence quark distributions
determined in Ref. [27],

|⇡i =
p
0.875 |ud̄i +

p
0.125 |ud̄qq̄i, (22)

we express the total quark distribution as

q⇡(x) ⌘ qu(x) + qd(x) + qū(x) + qd̄(x)

' 2 ⇥ 0.875 q⌧=2(x) + 4 ⇥ 0.125 q⌧=4(x)

= 1.75 q⌧=2(x) + 0.5 q⌧=4(x). (23)

Using the momentum sum rule we obtain the gluon dis-
tribution of the pion as g⇡(x) = (0.429 ± 0.007) g⌧=3(x).
We show in Fig. 2 the results evolved to µ

2 = 10GeV2

and a comparison with global analyses [88, 89]. We note
that the overall normalization of the gluon distribution
from our calculation seems overestimated in comparison
with some recent global analyses, which may arise from
neglecting higher Fock states for the gluon GFF.

IV. CONCLUSION AND OUTLOOK

The light-front holographic extension presented in this
article allows us to give a simultaneous description of
the intrinsic gluon distributions, GPD and PDF, and
the gluon GFF Ag(t), within a unified nonperturba-
tive framework, for both the nucleon and pion. The
actual computations are based on the holographic cou-
pling of the spin-two soft Pomeron to the hadron energy-
momentum tensor, constrained by the Veneziano struc-
ture. The comparison of our theoretical predictions, af-
ter DGLAP evolution, with global analyses and recent
lattice computations clearly demonstrates the predictive
power of this new framework.
In this article we have only used the parameters of the

soft Pomeron. For hard processes the contribution of a
hard Pomeron with a much larger intercept and smaller
slope also seems to be necessary [43]. However, after
evolution, our results describe the full gluon distribution
in accordance with phenomenological determinations, see
Fig. 2. This supports attempts to use the gauge/gravity
duality [18, 55, 90] to describe hard and soft di↵ractive
processes within a unified framework. The properties of
the Pomeron depend then on the kinematic regime of the
scattering process [55, 90, 91].
The gluonic and quark distributions of hadrons are

shown to have significantly di↵erent e↵ective QCD scales
and sizes compared to their electromagnetic distribu-
tions. The twist-three Fock state |qq̄gi in the pion (|qqqgi
for the nucleon) is responsible for the intrinsic gluon dis-
tribution at the initial evolution scale where the Pomeron
probe couples strongly with the constituent gluon. How-
ever, this Fock component does not contribute signifi-
cantly to the quark GPD since the EM probe does not
resolve the deeply bound constituent gluon [92], and thus
it is e↵ectively included in the twist-two qq̄ state (qqq for
the nucleon). Our results for A(t) can be extended to
the other two invariant GFFs B(t) and C(t) [3]. Of par-
ticular relevance is the coupling of the scalar Pomeron
trajectory–with the similar slope, but di↵erent intercept,
to determine the form factor C(t) [74, 75]. It can allow us
to gain further insights into the distribution of internal

de Teramond, Dosch, Liu, RSS, Brodsky, Deur  
PRD 2021



On the lattice, calculate spatial correlation in coordinate space

2 I. Balitsky et al. / Physics Letters B 808 (2020) 135621

Next, we discuss one-loop corrections. In Section 3, we analyze 
the gauge-link self-energy contribution and specific properties of 
its ultraviolet and short-distance behavior. Our results for the ver-
tex corrections to the gluon link are given in Section 4 in the form 
that is valid both in forward and non-forward cases. The “box” di-
agram is discussed in Section 5. Since our results in this case are 
rather lengthy, we present just some of them, and in the forward 
case only. The gluon self-energy corrections are discussed in Sec-
tion 6.

The subject of Section 7 is the structure of perturbative evo-
lution of the gluon operators and matching conditions. Section 8
contains a summary of the paper.

2. Matrix elements

The nucleon spin-averaged matrix elements for operators com-
posed of two-gluon-fields (with all four indices non-contracted) 
are specified by

Mµα;λβ(z, p) ≡ ⟨p| Gµα(z) [z,0] Gλβ(0)|p⟩ , (2.1)

where [z, 0] is the standard straight-line gauge link in the gluon 
(adjoint) representation

[x, y] ≡ Pexp
{

ig

1∫

0

dt (x − y)µ Ãµ(tx + (1 − t)y)
}

. (2.2)

The tensor structures for a decomposition over invariant ampli-
tudes may be built from two available 4-vectors pα , zα and the 
metric tensor gαβ . Incorporating the antisymmetry of Gρσ with 
respect to its indices, we have

Mµα;λβ(z, p) =
(

gµλpα pβ − gµβ pα pλ − gαλpµpβ + gαβ pµpλ

)
Mpp

+
(

gµλzαzβ − gµβ zαzλ − gαλzµzβ + gαβ zµzλ

)
Mzz

+
(

gµλzα pβ − gµβ zα pλ − gαλzµpβ + gαβ zµpλ

)
Mzp

+
(

gµλpαzβ − gµβ pαzλ − gαλ pµzβ + gαβ pµzλ

)
Mpz

+
(

pµzα − pαzµ
) (

pλzβ − pβ zλ

)
Mppzz

+
(

gµλgαβ − gµβ gαλ

)
Mgg , (2.3)

where the amplitudes M are functions of the invariant interval z2

and the Ioffe time [28] (pz) ≡ −ν (the minus sign is introduced 
for further convenience).

Since the matrix element should be symmetric with respect to 
interchange of the fields (which amounts to {µα} ↔ {λβ} and z →
−z), the functions Mpp , Mzz , Mgg , Mppzz and Mpz − Mzp are 
even functions of ν , while Mpz + Mzp is odd in ν .

The usual light-cone gluon distribution is obtained from
gαβ M+α;β+(z, p), with z taken in the light-cone “minus” direc-
tion, z = z− . We have

gαβ M+α;β+(z−, p) = −2p2
+Mpp(ν,0) , (2.4)

i.e., the PDF is determined by the Mpp structure,

−Mpp(ν,0) = 1
2

1∫

−1

dx e−ixνxf g(x) . (2.5)

Thus, we should choose the operators with the sets {µα; λβ} that 
contain Mpp in their parametrization.

Note that it is the density of the momentum G(x) ≡ xf g(x) car-
ried by the gluons rather than their number density f g(x) that is 

a natural quantity in this definition of the gluon PDF. In the lo-
cal z− = 0 (or ν = 0) limit, the x-integral gives the fraction of the 
hadron’s plus momentum carried by the gluons. In the absence 
of gluon-quark transitions, this fraction is conserved, which puts 
a restriction on the gg-component of the Altarelli-Parisi [29] ker-
nel. Namely, it should have the plus-prescription property when 
applied to G(x).

Due to antisymmetry of Gρσ with respect to its indices, 
the values α = + and β = + are excluded from the summa-
tion in Eq. (2.4). Furthermore, since g−− = 0, the combination 
gαβ M+α;β+(z, p) includes only summation over transverse in-
dices i, j = 1, 2, i.e. reduces to gij M+i; j+(z, p) ≡ M+i;+i(z, p) (we 
switched here to Euclidean summation over i), for which we have

M+i;+i = M0i;0i + M3i;3i + (M0i;3i + M3i;0i) . (2.6)

In the local z3 = 0 limit, these three combinations are proportional 
to E2

⊥, B2
⊥ and the third component (E × B)3 of the Poynting vec-

tor, respectively.
The decomposition of these combinations (with summation 

over i) in the basis of the M structures is

M0i;i0 =2p2
0Mpp + 2Mgg , (2.7)

M3i;i3 =2p2
3Mpp + 2z2

3Mzz

+ 2z3 p3
(
Mzp + Mpz

)
− 2Mgg , (2.8)

M0i;i3 =2p0
(

p3Mpp + z3Mpz
)

, (2.9)

M3i;i0 =2p0
(

p3Mpp + z3Mzp
)

. (2.10)

All of them contain the Mpp function defining the gluon dis-
tribution, though with different kinematical factors. Unfortunately, 
none of them is just Mpp : they all contain contaminating terms. 
Moreover, the M3i;i3 matrix element (proposed originally [4] for 
extractions of the gluon PDF on the lattice) contains three contam-
inations, while the others have just one addition. In particular, the 
matrix element M0i;i0 has Mgg as a contaminating term. It is easy 
to see that

M ji;i j ≡ ⟨p| G ji(z)Gij(0) |p⟩ = −2Mgg , (2.11)

where the summation over both i and j is assumed. Hence, the 
combination

M0i;i0 + M ji;i j =2p2
0Mpp (2.12)

may be used for extraction of the twist-2 function Mpp .
Combining together matrix elements of different types, one 

should take into account that, off the light cone, these matrix el-
ements have extra ultraviolet divergences related to presence of 
the gauge link. Due to the local nature of ultraviolet divergences, 
each matrix element, for any set of its indices {µα; λβ}, is multi-
plicatively renormalizable with respect to these divergences [30]. 
However, choosing different sets of {µα; νβ}, we get, in general, 
different anomalous dimensions.

Thus, it is not evident a priori which linear combinations 
of these matrix elements are multiplicatively renormalizable. In 
Ref. [31], it was established that the combinations represented 
in Eq. (2.6), namely, M0i;i0, M3i;i3, M0i;i3 + M3i;i0 (and also 
M0i;i3 − M3i;i0), with summation over transverse indices i, are each 
multiplicatively renormalizable at the one-loop level.

Furthermore, the combination Gij Gij (with summation over 
transverse i, j) equals to 2G12G12, whose matrix elements are mul-
tiplicatively renormalizable. As we will see, it has the same one-
loop UV anomalous dimension as M0i;i0, hence the combination of 
Eq. (2.12) is multiplicatively renormalizable at the one-loop level. 

X. Ji [PRL 2013]

Gluon distribution in Pseudo-PDF approach

Radyushkin [PLB 2017] 
Orginos, et al [PRD 2017] 

Joo, et al [JHEP 2019]

“Pseudo-PDF” formalism: Based on  coordinate-space  
factorization

Ioffe time,                    (convention from                                    )Braun, et al [PRD 1995]⌫ = pzz

Reduced Ioffe-time distribution

33

Renormalization: M(⌫, z2) =

 
M(⌫, z2)

M(⌫, 0)|z=0

!
/

 
M(0, z2)|p=0

M(0, 0)|p=0,z=0

!

Radyushkin [PLB 2017]



Gluon distribution in Pseudo-PDF approach
To determine unpolarized gluon distribution

Balitsky, et al [PLB 2020]

M0i;i0 = hp|G0i(z) [z, 0]Gi0(0) |pi = 2 p20Mpp + 2Mgg

Mji;ij = �2Mgg

M0i;i0 +Mji;ij = 2p20 Mpp

Combination is multiplicatively renormalizable

After renormalization and perturbative matching

4

Mpp(⌫, z
2) ! Ig(⌫, µ2) =

Z 1

0
dx cos(x⌫)x g(x, µ2)

4

Also see Zhang, et al [PRL 2019] & Li, et al [PRL 2019]

i, j ! x, y
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Lattice QCD calculation

MeV

fm

2+1 flavor clover Wilson fermions

a ⇡ 0.094

349 configurations

Lattice spacing,

L⇥ T = 323 ⇥ 64

m⇡ = 358

Lattice size,

Pion mass, 

1899 configurations



Special features: optimized operators and nucleon correlator

Nucleon correlation function using “Distillation” Peardon, et al [PRD 2009]

Distillation : low rank approximation of gauge covariant 
smearing  kernel - increases operator state overlaps onto  
low-lying modes

Elementals encode the choice of nucleon operator 
[7-9 operators] 

Perambulator

Baryon  
elemental

6

Perambulators encode quark propagation



Features of this calculation

Flow of gauge field, Bµ(⌧, xµ) so that Bµ|⌧=0 = Aµ

Diffusion length in      is   
p
8⌧x (⌧ ⇠ a2)

M. Luscher, JHEP 2010Gluonic operator using “Wilson flow”

7

7

Basis of operators (positive/negative parity, hybrid, higher spin)

7

theory and then subduced into irreducible representa-
tions of the octahedral group or the appropriate little
group. For the pion this is A

�
1 for zero momentum and

A2 for all the non-zero momenta that we consider.
The variational analysis corresponds to solution of the

generalised eigenvalue problem [8–10]

C(t)v(n) = �n(t)C(t0)v
(n) (9)

where the state energies are obtained from fits to �n(t) ⇠
e
�En(t�t0). The optimal combination of operators, Oi, to

interpolate state |ni from the vacuum is ⌦†
n =

P
i
v
(n)
i

O
†
i
.

Our implementation of the variational method is de-
scribed in Ref. [12].

In Figure 2 we show, for a range of momenta, the im-
provement obtained using the “optimised” pion operators
alongside the simple  ̄2�52 operators, where clearly
the correlators computed with the optimised operators
relax to the ground state more rapidly that the simpler
operators, typically at or before 10at from the source (a
time comparable with the values of t0 found to be optimal
in solution of equation 9).

Use of these optimised operators will lead to some con-
fidence when dealing with ⇡⇡ correlators where for times
& 10at away from the source, we will be able to largely
neglect the contribution of ⇡⇡? states.

V. PION MASS AND DISPERSION RELATION

As well as the volume dependence of energies of multi-
hadron states owing to hadron interactions suggested by

FIG. 1. Contributions of ground state (n = 0) pion (red) and
excited pion states (other colors) to the single pion correlator
at zero momentum, C(t) =

⌦�
 ̄2�52 

�
(t) ·

�
 ̄2�52 

�
(0)

↵

and Nvecs = 162 on the 243 lattice. Summed contribution of
all states indicated by the grey curve. Excited state pions are
observed to contribute significantly until t & 20 at. (Excited
state contributions determined from the results of variational
analysis using a large operator basis, see the text)
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FIG. 2. E↵ective massesa of single-pion correlators computed
using  ̄2�52 (darker shades, squares) and “optimised” op-
erators, ⌦n=0 (lighter shades, circles). Shown for a range of
momenta on the L/as = 24 lattice.
a throughout this paper we define the e↵ective mass of a

correlator C(t) to be me↵ = 1
3at

log
h

C(t)
C(t+3at)

i

the Lüscher formalism, there can also be exponential de-
pendence of single-hadron energies on L. We can attempt
to determine any such behavior for the pion by computing
its mass on the three volumes at our disposal. In Figure
3 we show the pion mass extracted on our three lattice
volumes where there is seen to be very little volume de-

pendence
⇣

m⇡(L/as=24)
m⇡(L/as=16) = 0.990(4)

⌘
. In [22], NPLQCD

suggest a �PT motivated form for the L dependence,

m⇡(L) = m⇡ + c
e
�m⇡L

(m⇡L)
3/2

. (10)

Fitting to this form we find atm⇡ = 0.06906(13) and
atc = 0.24(10) in good agreement with NPLQCD’s
0.069073(63)(62), 0.23(12)(7) respectively. We use
atm⇡ = 0.06906(13) as our best estimate for the pion
mass in all subsequent calculations5.
A complication which arises from our use of an

anisotropic lattice is the need to determine the precise
value of the anisotropy, ⇠, which relates the spatial lat-
tice spacing as to the temporal lattice spacing at = as/⇠.
The anisotropy appears in the dispersion relation of a
free-particle, where the periodic boundary conditions in
space lead to allowed momenta ~p = 2⇡

L

�
nx, ny, nz

�
for

integer nx, ny, nz, so that

�
atEn2)2 =

�
atm

�2
+

1

⇠2

✓
2⇡

L/as

◆2

n
2
, (11)

5 fitting the same data to a constant leads to atm⇡ = 0.06928(18)
with a somewhat poorer fit, �2/Ndof = 3.0.

Dudek, et al (PRD 2012)



Extraction of matrix elements
Correlation matrix analysis using variational technique

System of generalized eigenvalue equations for correlation matrix

Orthogonality conditions on the eigenvectors of different states

Difficult to distinguish degenerate states by their time-dependence alone

Use summed generalized eigenvalue problem (sGEVP)
J. Bulava, et al, JHEP 2012

C exp(��Et/2)

D t exp(��Et)

M
e↵
nn(t, t0) = Mnn +O(�EN+1,nt exp(��EN+1,nt))

(GEVP)

(sGEVP)

88

1/a = 1.73(3) GeV. The u/d quark mass in the DWF sea is 0.005 which corresponds to a

pion mass of 331 MeV. The sea strange-quark mass is 0.04. This pion mass is matched for

the overlap fermion with a valence u/d quark mass of 0.016. With the help of the multimass

algorithm [40], we compute a set of 26 quark masses for the nucleon and 10 for the loops

with an overhead of about 8% [41] of the cost of inverting the lowest quark mass. The

summed ratio of the strangeness is shown in Fig. 11(a) for ams = 0.063 and amud = 0.016.

The nucleon propagator in the DI of the three-point function is calculated with a smeared

grid source at t = 0 and t = 32. The time-forward propagator with positive-parity projection

and the time-backward propagator with negative-parity projection are averaged. We see

that a linear slope develops after t = 6 where the nucleon starts to emerge in the nucleon

correlator and it is in the middle of the plateau from Fig. 9.

To see the contributions to R′(t, t0) and the respective slopes from the low modes and the

high modes in the loop, we plot them separately in Fig. 11(b). It is interesting to observe

that practically all the contributions to R′(t, t0) are coming from the low modes despite the

fact that the low modes saturate only ∼ 15% of the strange quark loop. The high-mode

contribution is quite small. Since the low-mode contribution is exact, it only has variance

from the gauge ensemble. The variance of the high-mode contribution comes from both the

noise and gauge ensembles. Since its contribution is small, there is no need to improve this

part of the estimate with more noise vectors.

(a) (b)
FIG. 10. The cartoon shows the summed ratio method for the disconnected three-point function.

The red part is the additional contribution to the sum when the propagator length is increased,

which is within the plateau region.

24



Simultaneous correlated fit to matrix elements for all         
(fixed momentum & gradient flow)  

Lattice QCD matrix elements

11

FIG. 5. Extraction of the matrix elements using the sGEVP method for di↵erent flow times, nucleon momenta and field
separations on the ensemble a094m358. The bands are the fits described in the text. The top and bottom rows contain the
matrix elements for flow time ⌧/a

2 = 1.0 and 3.0, respectively. In each row, the left column compares between the matrix
elements for p = {1, 6}⇥ 2⇡

aL = 0.41 GeV, 2.46 GeV respectively at zero separation; the middle column compares between the
matrix elements for p = 1⇥ 2⇡

aL = 0.41 GeV and separations z = {1, 6}⇥ a= 0.094 fm, 0.564 fm respectively. The right column
does the same comparison as done in the middle column, but for p = 6⇥ 2⇡

aL = 2.46 GeV.

of the parameter, �E. As the hadronic spectrum is determined by the two-point correlators, we use the value of
�E obtained from the fit to the matrix element for z = 0 as the prior for our subsequent fits to the matrix elements
for z > 0 at that particular nucleon momentum. We set the prior-width of �E for z > 0 to be three times larger
than the uncertainty in �E and allow for random priors in XMBF [83]. The priors are chosen randomly from normal
distributions with the given prior-widths. We perform a simultaneous and correlated fit to the matrix elements for
z = {1, 2, 3, 4, 5, 6}⇥ a = 0.094 fm, 0.188 fm, 0.282 fm, 0.376 fm, 0.470 fm, 0.564 fm respectively,

M
e↵(t)i = Ai +Bi t exp(��E t) , (34)

where i = 1, 2, · · · 6 and the �E is assumed to be the same for matrix elements at a fixed nucleon momentum and
flow time. This procedure is particularly helpful for a well-controlled fit to the large momentum matrix elements for
which the signal-to-noise ratio is poor, especially at flow times ⌧/a2 < 1.6.

In Fig. 5, we illustrate our fits to the matrix elements for ⌧/a
2 = 1.0, in the upper row and for ⌧/a

2 = 3.0 in
the bottom row. Here, we compare the fitted matrix elements among the momenta, p = {1, 6} ⇥

2⇡
aL = 0.41 GeV,

2.46 GeV respectively; and the separations, z = {0, 1, 6}⇥ a = 0, 0.094 fm, 0.564 fm respectively, and list the fitted
parameters in Table III. One can immediately see that the �E values determined for the non-zero separations are
almost identical compared to that obtained for the matrix elements at z = 0 where no prior is assigned on the fit
parameter �E. This, along with the goodness of the fit in the extraction of the matrix elements for the non-zero
separations, indicates the validity of our fitting procedure.

From Fig. 5 and the corresponding fit parameters in Table III we see that the lattice data are described well by our
fit procedure. The �

2
/d.o.f. shows that the choice of prior-width for �E at z > 0 is an appropriate one. We notice

from Fig. 5 that the matrix elements for z = 6a = 0.564 fm, have a flat behavior as a function of the source-sink
separations. This can also be understood from the smallness of B-parameters listed in Table III, with relatively larger
uncertainties.

The nucleon two-point correlators have quite good signal-to-noise ratios up to the source-sink separation t = 9a =
0.846 fm at p = 6 ⇥

2⇡
aL = 2.46 GeV, as can be seen from Fig. 3. Fig. 5 shows, however, that the matrix elements

almost lose any statistical signal around source-sink separation t = 6a = 0.564 fm, which is expected as the nucleon
momentum increases. As shown in [84], the optimized interpolators reduce the excited-state contributions allowing
us to start the fit at significantly earlier source-sink separations. In support of this, we indeed see from Fig. 5 that
the matrix elements for p = 1⇥ 2⇡

aL = 0.41 GeV reach a plateau around the source-sink separation, t = 4a = 0.376 fm.

99
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FIG. 5. Extraction of the matrix elements using the sGEVP method for di↵erent flow times, nucleon momenta and field
separations on the ensemble a094m358. The bands are the fits described in the text. The top and bottom rows contain the
matrix elements for flow time ⌧/a

2 = 1.0 and 3.0, respectively. In each row, the left column compares between the matrix
elements for p = {1, 6}⇥ 2⇡

aL = 0.41 GeV, 2.46 GeV respectively at zero separation; the middle column compares between the
matrix elements for p = 1⇥ 2⇡

aL = 0.41 GeV and separations z = {1, 6}⇥ a= 0.094 fm, 0.564 fm respectively. The right column
does the same comparison as done in the middle column, but for p = 6⇥ 2⇡

aL = 2.46 GeV.

to 6, and for field separations, z = s a where s = 0 to 6; a being the lattice spacing. We construct the e↵ective matrix
element, Me↵(t, z, p, ⌧) for each flow time, nucleon momentum and field separation, using the formulation described
in appendix A and fit the matrix elements using the functional form in Eq. (A12), which can be written in simplified
notation and arguments as

M
e↵(t) = A+B t exp(��E t) . (33)
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M
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In Fig. 5, we illustrate our fits to the matrix elements for ⌧/a
2 = 1.0, in the upper row and for ⌧/a

2 = 3.0 in
the bottom row. Here, we compare the fitted matrix elements among the momenta, p = {1, 6} ⇥

2⇡
aL = 0.41 GeV,

2.46 GeV respectively; and the separations, z = {0, 1, 6}⇥ a = 0, 0.094 fm, 0.564 fm respectively, and list the fitted
parameters in Table III. One can immediately see that the �E values determined for the non-zero separations are
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From Fig. 5 and the corresponding fit parameters in Table III we see that the lattice data are described well by our
fit procedure. The �

2
/d.o.f. shows that the choice of prior-width for �E at z > 0 is an appropriate one. We notice

from Fig. 5 that the matrix elements for z = 6a = 0.564 fm, have a flat behavior as a function of the source-sink
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FIG. 6. The reduced matrix elements, M(⌫, z2) with respect to the Io↵e-time for di↵erent flow times. The top-left, top-right,
bottom-left, bottom-right panels have the reduced matrix elements for ⌧ = 1.0, 1.8, 2.6, 3.4 in lattice units respectively.

unpolarized gluon PDF [4], it has been found in [85] that a ⌫-range that is much larger than the present calculation, or
any available lattice QCD determination of the gluon ITD [39, 40], is necessary to determine the gluon distribution in
the entire x-region from the ITD data. Therefore, we do not expect a proper determination of the gluon distribution
in the entire x-region, especially in the small-x domain. However, given our lattice data in a limited region, namely
⌫ 2 [0, 7.07], we extract the gluon PDF from the reduced pseudo-ITD using the Jacobi polynomial parametrization
proposed in [28]. The details of this procedure are presented in [28, 54]; here we start with the simplest form for the
PDF containing the matching kernel and the leading PDF behavior, which we label as
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. (35)

Here, K(x⌫, µ2
z
2) is the matching kernel that factorizes the reduced pseudo-ITD directly to the gluon PDF and the

beta function, B(a, b) =
R 1
0 r

a�1 (1� r)b�1
dr . To assess our fit model, and the associated systematic uncertainties,

we add terms to the model. We consider the e↵ect of adding one transformed Jacobi polynomial to the functional
form of the PDF and label this model
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Finally, we consider a model that we denote
⇥
2-param (Q)+P1

⇤
for which we add a nuisance term to capture

possible O
�
a/|z|

�
e↵ects. This nuisance term can be parametrized by a transformed Jacobi polynomial [28]

M(⌫, z2) =

Z 1

0
dxK(x⌫, µ2

z
2)

x
↵ (1� x)�

B(↵+ 1,� + 1)
+

✓
a

|z|

◆
P1(⌫) , (37)

M(⌫, z2) =

 
M(⌫, z2)

M(⌫, 0)|z=0

!
/

 
M(0, z2)|p=0

M(0, 0)|p=0,z=0

!

Flow time dependence is minimized in the double ratio

Reduced ITD:

1010

Before ratio, SNR = 6.5

After ratio, SNR = 12.1

p = 2.46GeV



Zero flow time extrapolation of rITD (examples)

For fixed                       fit forms:                  ,                                , etc.p & z, A+B⌧ A+B⌧ + C⌧2
14

FIG. 7. Reduced matrix elements, M(⌧) extrapolated to ⌧ ! 0 limit for di↵erent nucleon momenta and di↵erent field
separations. The functional form used to fit the reduced matrix elements is: M(⌧) = c0 + c1⌧ . The top-left panel shows the fit
for p = 1⇥ 2⇡

aL = 0.41 GeV and z = a = 0.094 fm. The top-middle panel shows the fit for p = 2⇥ 2⇡
aL = 0.82 GeV and z = 2a

= 0.188 fm. The top-right panel shows the fit for p = 2⇥ 2⇡
aL = 0.82 GeV and z = 6a = 0.564 fm. The bottom-left panel shows

the fit for p = 4⇥ 2⇡
aL = 1.64 GeV and z = 6a = 0.564 fm. The bottom-middle panel shows the fit for p = 5⇥ 2⇡

aL = 2.05 GeV
and z = 4a = 0.376 fm. The bottom-right panel shows the fit for p = 6⇥ 2⇡

aL = 2.46 GeV and z = a = 0.094 fm.

FIG. 8. Reduced Io↵e-time pseudo-distribution, M(⌫, z2) plotted with respect to the Io↵e-time ⌫. For each nucleon momentum
and field separation, the reduced matrix elements for di↵erent flow times are extrapolated to the limit, ⌧ ! 0 , extracting the
flow time independent reduced pseudo-ITD.
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FIG. 8. Reduced Io↵e-time pseudo-distribution, M(⌫, z2) plotted with respect to the Io↵e-time ⌫. For each nucleon momentum
and field separation, the reduced matrix elements for di↵erent flow times are extrapolated to the limit, ⌧ ! 0 , extracting the
flow time independent reduced pseudo-ITD.
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Fit NNPDF3.1 gluon PDF using ansatz

3

II. GLUON DISTRIBUTIONS FROM
HELICITY-BASIS PARAMETRIZATION

To construct the parametrization of the helicity-basis
gluon distributions, g+(x) for helicity-aligned distribu-
tions and g�(x) for helicity-antialigned distribution, we
consider the counting rules based on perturbative QCD
analysis [21]. Compared to valence quark distributions,
which fall o↵ as (1 � x)3 as x ! 1, g+(x) is suggested
to fall-o↵ faster as (1 � x)4 and g�(x) is expected to be
further suppressed by (1 � x)2. Although the (1 � x)
power behavior qualitatively provides the fall-o↵ feature
of the distributions at large x, the exact power values
depend on the scale, which is not specified in the per-
turbative QCD analysis [21]. Instead of strictly impos-
ing the power counting as x ! 1 and the Pomeron in-
tercept as x ! 0, we only take them as guidance and
phenomenologically introduce two parameters ↵ and �
to allow the variation of the power behavior at small and
large x regions as usually adopted in global analyses. For
a good description of the gluon distribution in the full-
x region, we also include a polynomial (1 + �

p
x + �x)

with parameters � and � to be fitted. As a modification
of the functional form utilized in [21] by including the
polynomial, we parametrize the helicity-aligned and the
helicity-antialigned gluon distributions as

xg+(x) = x↵
⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

⇥(1 + �
p

x + �x),

xg�(x) = x↵
⇥
A(1 � x)6+� + B(1 � x)7+�

⇤

⇥(1 + �
p

x + �x), (1)

where A and B are normalization parameters to be de-
termined. The inclusion of the subleading term in the
power of (1 � x) is to account for the contribution from
higher Fock state. For each term, the power of (1 � x)
di↵ers by 2 as suggested by the pQCD analysis [21]. We
refer to the parametrization form Eq. (1) as the ansatz-1.

As a phenomenological exploration, we consider an-
other option of g�(x) being suppressed by one power of
(1�x) in comparison with the g+(x). This results in the
parametrization,

xg+(x) = x↵
⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

(1 + �
p

x + �x),

xg�(x) = x↵
⇥
A(1 � x)5+� + B(1 � x)6+�

⇤

(1 + �
p

x + �x), (2)

which we refer to as the ansatz-2. As we will discuss later,
fixing the (1 � x) power di↵erence between g+(x) and
g�(x) introduces a model bias, which leads to an under-
estimation of the uncertainties. To investigate the model
uncertainty, we consider a more flexible parametrization,

xg+(x) = x↵
⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

(1 + �
p

x + �x),

xg�(x) = x↵
⇥
A(1 � x)6+�0

+ B(1 � x)7+�0⇤

(1 + �0px + �0x), (3)

where the (1 � x) exponents and the polynomial coe�-
cients in g+(x) and g�(x) are independent parameters.
We refer to this parametrization as ansatz-3. We note
that all these ansatzes have the �g(x) approaching to 0
as x ! 0. This indicates that the helicity correlation be-
tween the gluon and its parent nucleon disappears when
x ! 0, where the relative rapidity becomes infinity. The
saturation e↵ect may suppress the evolution of helicity
distributions at small-x and consequently leave a small
amount of spin contribution in the small-x region [13, 48].
Since the goal of this paper is not the small-x distribu-
tion, we limit to the assumption above in this study and
restrict the subsequent analyses in the x � 10�3 region.

With the parametrization of the helicity-aligned and
the helicity-antialigned gluon distributions, one can di-
rectly obtain the unpolarized and polarized gluon distri-
butions from the sum and the di↵erence of them,

xg(x) ⌘ xg+(x) + xg�(x), (4)

x�g(x) ⌘ xg+(x) � xg�(x). (5)

To determine the parameters in ansatz-1 and ansatz-
2, we fit the unpolarized gluon distribution from the
NNPDF global analysis [25] at the factorization scale
µ = 2 GeV. Our procedure described here can be applied
to any other gluon distribution given by global analy-
ses [23, 24, 26, 27] or model calculation. To fit the dis-
tribution in the full-x range, we select 200 points in x
values. 100 of them are equally separated from 10�4 to
10�1 in the logarithmic scale and the other 100 x-values
are equally separated from 10�1 to 1 in the linear scale.
Each point is weighted by the inverse square of its un-
certainty given by the global analysis. We take the 100
replicas of the gluon distribution from NNPDF3.1 NLO
PDF set [25]. For each replica, we perform a fit to de-
termine the parameters. In the end, we have 100 sets
of parameters, which determine the gluon distributions
following the ansatz-1 or the ansatz-2. For the ansatz-3
in which the parameters �, � and � are chosen indepen-
dently for g+(x) and g�(x), we perform a simultaneous
fit to the unpolarized [25] and polarized [11] gluon dis-
tributions. In this case, the result of the polarized gluon
distribution is driven by the global fit. As a result, the
polarized gluon distribution associated with ansatz-3 has
a better match with the NNPDF global analysis. The re-
sults of the unpolarized gluon distribution are compared
with the global analysis in FIG. 1, where the central value
is evaluated from the average value of the 100 replicas for
each ansatz and the uncertainty band is the standard de-
viation among them. One can observe that the three
ansatzes have almost indi↵erentiable results and match
the global analysis well. For completeness, we list the
fitted values of the parameters in Table I.

From the definition of the polarized gluon distribution
in Eq. (5), we now obtain the polarized gluon distribu-
tion based on the above fit results of xg+(x) and xg�(x).
Unlike the unpolarized distribution, the results of �g(x)
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distribution is driven by the global fit. As a result, the
polarized gluon distribution associated with ansatz-3 has
a better match with the NNPDF global analysis. The re-
sults of the unpolarized gluon distribution are compared
with the global analysis in FIG. 1, where the central value
is evaluated from the average value of the 100 replicas for
each ansatz and the uncertainty band is the standard de-
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fitted values of the parameters in Table I.

From the definition of the polarized gluon distribution
in Eq. (5), we now obtain the polarized gluon distribu-
tion based on the above fit results of xg+(x) and xg�(x).
Unlike the unpolarized distribution, the results of �g(x)

3

II. GLUON DISTRIBUTIONS FROM
HELICITY-BASIS PARAMETRIZATION

To construct the parametrization of the helicity-basis
gluon distributions, g+(x) for helicity-aligned distribu-
tions and g�(x) for helicity-antialigned distribution, we
consider the counting rules based on perturbative QCD
analysis [21]. Compared to valence quark distributions,
which fall o↵ as (1 � x)3 as x ! 1, g+(x) is suggested
to fall-o↵ faster as (1 � x)4 and g�(x) is expected to be
further suppressed by (1 � x)2. Although the (1 � x)
power behavior qualitatively provides the fall-o↵ feature
of the distributions at large x, the exact power values
depend on the scale, which is not specified in the per-
turbative QCD analysis [21]. Instead of strictly impos-
ing the power counting as x ! 1 and the Pomeron in-
tercept as x ! 0, we only take them as guidance and
phenomenologically introduce two parameters ↵ and �
to allow the variation of the power behavior at small and
large x regions as usually adopted in global analyses. For
a good description of the gluon distribution in the full-
x region, we also include a polynomial (1 + �

p
x + �x)

with parameters � and � to be fitted. As a modification
of the functional form utilized in [21] by including the
polynomial, we parametrize the helicity-aligned and the
helicity-antialigned gluon distributions as

xg+(x) = x↵
⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

⇥(1 + �
p

x + �x),

xg�(x) = x↵
⇥
A(1 � x)6+� + B(1 � x)7+�

⇤

⇥(1 + �
p

x + �x), (1)

where A and B are normalization parameters to be de-
termined. The inclusion of the subleading term in the
power of (1 � x) is to account for the contribution from
higher Fock state. For each term, the power of (1 � x)
di↵ers by 2 as suggested by the pQCD analysis [21]. We
refer to the parametrization form Eq. (1) as the ansatz-1.

As a phenomenological exploration, we consider an-
other option of g�(x) being suppressed by one power of
(1�x) in comparison with the g+(x). This results in the
parametrization,

xg+(x) = x↵
⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

(1 + �
p

x + �x),

xg�(x) = x↵
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which we refer to as the ansatz-2. As we will discuss later,
fixing the (1 � x) power di↵erence between g+(x) and
g�(x) introduces a model bias, which leads to an under-
estimation of the uncertainties. To investigate the model
uncertainty, we consider a more flexible parametrization,

xg+(x) = x↵
⇥
A(1 � x)4+� + B(1 � x)5+�

⇤

(1 + �
p

x + �x),
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(1 + �0px + �0x), (3)

where the (1 � x) exponents and the polynomial coe�-
cients in g+(x) and g�(x) are independent parameters.
We refer to this parametrization as ansatz-3. We note
that all these ansatzes have the �g(x) approaching to 0
as x ! 0. This indicates that the helicity correlation be-
tween the gluon and its parent nucleon disappears when
x ! 0, where the relative rapidity becomes infinity. The
saturation e↵ect may suppress the evolution of helicity
distributions at small-x and consequently leave a small
amount of spin contribution in the small-x region [13, 48].
Since the goal of this paper is not the small-x distribu-
tion, we limit to the assumption above in this study and
restrict the subsequent analyses in the x � 10�3 region.

With the parametrization of the helicity-aligned and
the helicity-antialigned gluon distributions, one can di-
rectly obtain the unpolarized and polarized gluon distri-
butions from the sum and the di↵erence of them,

xg(x) ⌘ xg+(x) + xg�(x), (4)

x�g(x) ⌘ xg+(x) � xg�(x). (5)

To determine the parameters in ansatz-1 and ansatz-
2, we fit the unpolarized gluon distribution from the
NNPDF global analysis [25] at the factorization scale
µ = 2 GeV. Our procedure described here can be applied
to any other gluon distribution given by global analy-
ses [23, 24, 26, 27] or model calculation. To fit the dis-
tribution in the full-x range, we select 200 points in x
values. 100 of them are equally separated from 10�4 to
10�1 in the logarithmic scale and the other 100 x-values
are equally separated from 10�1 to 1 in the linear scale.
Each point is weighted by the inverse square of its un-
certainty given by the global analysis. We take the 100
replicas of the gluon distribution from NNPDF3.1 NLO
PDF set [25]. For each replica, we perform a fit to de-
termine the parameters. In the end, we have 100 sets
of parameters, which determine the gluon distributions
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TABLE I. The fitted values of parameters in the three
parametrization ansatzes. The second row of ansatz-3 gives
the values of parameters �0, �0, and �0.

Ansatz ↵ � � �

1 0.036 ± 0.058 0.95 ± 1.28 �2.80 ± 0.63 2.62 ± 0.95

2 0.034 ± 0.060 1.11 ± 1.32 �2.87 ± 0.56 2.67 ± 0.86

3 0.034 ± 0.064 0.54 ± 1.30 �2.63 ± 0.60 2.54 ± 1.01

— 0.91 ± 2.63 �2.55 ± 0.95 3.24 ± 2.83

FIG. 1. Unpolarized gluon distributions obtained by fitting
ansatz-1 (Eq. (1)), ansatz-2 (Eq. (2)), and ansatz-3 (Eq. (3))
to the NNPDF distribution at the factorization scale µ = 2
GeV. The gray band shows the unpolarized gluon distribution
xg(x) as given by the NNPDF global analysis. The blue, red,
and cyan bands labeled by Ansatz-1, Ansatz-2, and Ansatz-3
show distributions determined according to ansätze-1, 2, and
3 for the xg+(x) and xg�(x) distributions, respectively.

determined from ansatz-1, 2, and 3 have observable dif-
ference, especially in the region 10�2 <

⇠ x <
⇠ 0.5, as shown

in FIG. 2. However, all these determinations of x�g(x)
are in good agreement within the uncertainty range of
the NNPDF global analysis with a noticeable di↵erence
between the NNPDF and ansatz-1 distributions in the
0.09 <

⇠ x <
⇠ 0.2 region. We note that the small uncer-

tainties of �g(x) from ansatz-1 and ansatz-2 are biased
by the parametrization form, Eqs (1) and (2), where the
(1 � x) power di↵erence are fixed between g+(x) and
g�(x). For the ansatz-3, we introduce independent pa-
rameters for the (1�x) powers and the polynomial parts
of the two helicity basis distributions. Thus, the ansatz-
3 is a more flexible parametrization than ansatz-1 and
ansatz-2, but it requires a simultaneous fit to both unpo-
larized and polarized distributions to determine the pa-
rameters. Therefore, the result from ansatz-3 is driven by
global analysis and less biased. The di↵erence between
the result from ansatz-3 and the one from ansatz-1 or
ansatz-2 indicates the model uncertainty of imposing the
(1 � x) power di↵erence of g+(x) and g�(x), or, in other

words, how much the uncertainties of the results from
ansatz-1 and ansatz-2 are biased.

Due to the current precision of experimental data, the
phenomenological determination of �G is sensitive to the
parametrization form in the global analysis. If allowing
a possible sign-change of �g(x) at some x value, one
will find large uncertainties of �g(x) and thus very poor
constraint on �G. In our approach, the helicity retention
is incorporated in our parametrization of ansatz-1 and
ansatz-2, where the polarized gluon distribution is fixed
once the unpolarized distribution is determined. As we
will show in the next section, the result from the ansatz-3
is also consistent with the helicity retention, although it
is not imposed in the parametrization form.

FIG. 2. Polarized gluon distributions from the fit parameters
determined from fitting ansatz-1 and ansatz-2 to the NNPDF
unpolarized gluon distribution. Ansatz-3 refers to the polar-
ized gluon distribution obtained from a simultaneous fit to
the NNPDF3.1 NLO PDF set [25] and NNPDFpol1.1 PDF
set [11] using fit paramterization in Eq. (3). The gray band
shows the polarized gluon distribution x�g(x) as given by the
NNPDFpol1.1 global analysis [11]. The blue, red, and cyan
bands labeled by Ansatz-1, Ansatz-2, and Ansatz-3 show dis-
tributions obtained using parameters obtained in the fits of
xg+(x) and xg�(x) to the NNPDF gluon distribution.

One can observe that the uncertainties of the x�g(x)
determined from ansatz-1 and ansatz-2 are highly con-
strained. This is due to the bias of the parametrization
form, which assumes a relation between the two helicity-
basis distributions and thus leads to an underestimation
of the uncertainties of the polarized distribution. On
the other hand, ansatz-3 is more flexible and the uncer-
tainty of x�g(x) is governed by the global analysis of
x�g(x). An outstanding question is how to distinguish
between these three di↵erent determinations of x�g(x)
distributions, especially in the large x-region which is of
primary interest for the nonperturbative LQCD calcula-
tions of PDFs. One answer is, as we will see in Section IV,
the gluon helicity �G obtained from the Io↵e-time dis-
tribution obtained from ansatz-1 parametrization has a

Asymptotic form: 
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We define,

CR(a, b; !) ⌘ Re (ER(a, b; !)) , (16)

SR(a, b; !) ⌘ Im (ER(a, b; !)) (17)

Using the above expressions, we can summarize the
asymptotic expansions of the unpolarized and polarized
gluon ITDs for ansatz-1:

M(!, µ2) = A
⇥ �

CR(↵, 4 + �; !)

+� CR(↵ + 1/2, 4 + �; !) + � CR(↵ + 1, 4 + �; !)
�

+
�

� ! � + 2
� ⇤

+ B
⇥

� ! � + 1
⇤

+O
�
1/!a+R+1

�
(18)

and

M(!, µ2) = A
⇥ �

SR(↵, 4 + �; !)

+� SR(↵ + 1/2, 4 + �; !) + � SR(↵ + 1, 4 + �; !)
�

�
�

� ! � + 2
� i

+ B
⇥

� ! � + 1
⇤

+O
�
1/!a+R+1

�
(19)

Similar expressions can be written for ansatz-2 and
ansatz-3. We show the asymptotic limits of the unpo-
larized and polarized gluon ITDs for ansatz-2 in FIGs. 8
and 9, respectively. For the demonstration purpose, we
select one arbitrary set of parameters from to the fit to
1 replica of the NNPDF unpolarized gluon distribution
described in Section II.

The M(!) and �M(!) approach the asymptotic lim-
its around ! ⇠ 15 as can be seen in FIGs. 8 and 9. It
is important to note that if future LQCD calculations of
gluon ITD can reach the region ! ⇠ 15, they will be able
to provide nonperturbative information to the Lipatov’s
pomeron [36, 37].

Using the fact that gluon PDF diverges much faster
than the valence quark PDF in the limit x ! 0, one can
show that the asymptotic limit of the ITD corresponding
to nucleon valence quark distribution will set in at earlier
! compared to the gluon ITDs, also noted in [47]. This
implies that the asymptotic region of the nucleon valence
quark ITD can be approached easily in the nonperturba-
tive calculations compared to the gluon ITDs.

VII. APPLICATIONS TO LATTICE QCD
CALCULATIONS OF PDFS

In recent years, several LQCD methods have been pro-
posed and developed to probe the light-cone structure of
hadrons, including the path-integral formulation of the
deep-inelastic scattering hadronic tensor [73], coordinate-
space method for the calculating light-cone distribu-
tion amplitudes [59], inversion method [74], quasi-
PDFs/LaMET [17, 18], pseudo-PDFs [60], and good lat-
tice cross sections [61, 75]. For the most recent review of
LQCD calculations of PDFs, see [76].

FIG. 8. Asymptotic expansion of the unpolarized gluon
ITD corresponding to a given set of parameters obtained by
fitting one replica of NNPDF unpolarized gluon distribution
using ansatz-2 for the xg+(x) and xg�(x) distributions. The
cyan line indicates the ITD and the dashed line indicates the
asymptotic limit of the ITD governed by the corresponding
fit parameters.

FIG. 9. Asymptotic expansion of the polarized gluon ITD
corresponding obtained by fitting one replica of NNPDF un-
polarized gluon distribution using ansatz-2. The dashed line
indicates the asymptotic limit of the polarized gluon ITD cor-
responding to fit parameters.

The extraction of PDFs from LQCD calculations has
received great interest since Ji’s proposal in [17, 18]. In-
stead of directly calculating the light-cone correlation
functions which define the PDFs, one can extract them
from the spatial correlation of parton fields calculable on
the Euclidean lattice. We begin this section by acknowl-
edging that any LQCD calculations of PDFs using any of
the above formalisms share the common challenge of how
best to extract a continuous distribution from discrete
data, compounded by a limited number of data points
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In recent years, several LQCD methods have been pro-
posed and developed to probe the light-cone structure of
hadrons, including the path-integral formulation of the
deep-inelastic scattering hadronic tensor [73], coordinate-
space method for the calculating light-cone distribu-
tion amplitudes [59], inversion method [74], quasi-
PDFs/LaMET [17, 18], pseudo-PDFs [60], and good lat-
tice cross sections [61, 75]. For the most recent review of
LQCD calculations of PDFs, see [76].

FIG. 8. Asymptotic expansion of the unpolarized gluon
ITD corresponding to a given set of parameters obtained by
fitting one replica of NNPDF unpolarized gluon distribution
using ansatz-2 for the xg+(x) and xg�(x) distributions. The
cyan line indicates the ITD and the dashed line indicates the
asymptotic limit of the ITD governed by the corresponding
fit parameters.

FIG. 9. Asymptotic expansion of the polarized gluon ITD
corresponding obtained by fitting one replica of NNPDF un-
polarized gluon distribution using ansatz-2. The dashed line
indicates the asymptotic limit of the polarized gluon ITD cor-
responding to fit parameters.

The extraction of PDFs from LQCD calculations has
received great interest since Ji’s proposal in [17, 18]. In-
stead of directly calculating the light-cone correlation
functions which define the PDFs, one can extract them
from the spatial correlation of parton fields calculable on
the Euclidean lattice. We begin this section by acknowl-
edging that any LQCD calculations of PDFs using any of
the above formalisms share the common challenge of how
best to extract a continuous distribution from discrete
data, compounded by a limited number of data points

RSS, Liu, Paul 
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FIG. 6. The reduced matrix elements, M(⌫, z2) with respect to the Io↵e-time for di↵erent flow times. The top-left, top-right,
bottom-left, bottom-right panels have the reduced matrix elements for ⌧ = 1.0, 1.8, 2.6, 3.4 in lattice units respectively.

unpolarized gluon PDF [4], it has been found in [85] that a ⌫-range that is much larger than the present calculation, or
any available lattice QCD determination of the gluon ITD [39, 40], is necessary to determine the gluon distribution in
the entire x-region from the ITD data. Therefore, we do not expect a proper determination of the gluon distribution
in the entire x-region, especially in the small-x domain. However, given our lattice data in a limited region, namely
⌫ 2 [0, 7.07], we extract the gluon PDF from the reduced pseudo-ITD using the Jacobi polynomial parametrization
proposed in [28]. The details of this procedure are presented in [28, 54]; here we start with the simplest form for the
PDF containing the matching kernel and the leading PDF behavior, which we label as

⇥
2-param (Q)

⇤

M(⌫, z2) =

Z 1

0
dx K(x⌫, µ2

z
2)

x
↵ (1� x)�

B(↵+ 1,� + 1)
. (35)

Here, K(x⌫, µ2
z
2) is the matching kernel that factorizes the reduced pseudo-ITD directly to the gluon PDF and the

beta function, B(a, b) =
R 1
0 r

a�1 (1� r)b�1
dr . To assess our fit model, and the associated systematic uncertainties,

we add terms to the model. We consider the e↵ect of adding one transformed Jacobi polynomial to the functional
form of the PDF and label this model
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◆
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Finally, we consider a model that we denote
⇥
2-param (Q)+P1

⇤
for which we add a nuisance term to capture

possible O
�
a/|z|

�
e↵ects. This nuisance term can be parametrized by a transformed Jacobi polynomial [28]
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Z 1

0
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+ discretization error
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+ correction to 2-parameter form
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Model L
2
/d.o.f. �

2
/d.o.f.

2-param (Q) 1.07 0.81

3-param (Q) 1.11 0.82

2-param (Q)+P1 1.04 0.77

TABLE IV. The L
2
/d.o.f. and the �

2
/d.o.f. of di↵erent models used to perform Jacobi polynomial parametrization of the

lattice reduced pseudo-ITD to calculate the gluon PDF.

FIG. 9. Comparison among light-cone Io↵e-time distributions calculated using Jacobi polynomial parametrization and the
corresponding x g(x) distributions at 2 GeV in the MS-scheme.

FIG. 10. Lattice reduced pseudo-ITD shown along with their reconstructed fitted bands calculated for the model: 2-param
(Q).

JAM20 [86] at µ = 2 GeV. A similar comparison can be made with the other global fits of the gluon PDF, such as with
CJ15 [5], HERAPDF2.0 [87], MSHT20 [2]. To determine the normalization of the gluon PDF according to Eq. (15),
we need to normalize the extracted PDF with the gluon momentum fraction. There has been a number of lattice
calculations to extract the gluon momentum fraction [34, 88], as well as phenomenological calculations [3, 4]. We take
the results from [34], which is hxig=0.427(92) in the MS scheme at renormalization scale µ = 2 GeV, and apply this
normalization to our gluon PDF. One could similarly adopt the normalization from the hxig determination in [88]. We
consider the uncertainties of our extracted gluon PDF and the gluon momentum fraction from [34] to be uncorrelated

ITD

�2/d.o.f. ⇠ 0.82

Perturbative matching 
 Balitsky, et al [PLB 2020]
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FIG. 11. Io↵e-time distribution after the implementation of the perturbative matching kernel on the lattice reduced pseudo-
ITD data along with the light-cone ITD calculated for the model: 2-param (Q), in the MS renormalization scheme at 2
GeV.

FIG. 12. Unpolarized gluon PDF (blue band) extracted from our lattice data using the 2-param (Q) model. We compare
our results to gluon PDFs extracted from global fits to experimental data, CT18 [3], NNPDF3.1 [4], and JAM20 [86]. The

normalization of the gluon PDF is performed using the gluon momentum fraction hxiMS
g (µ = 2GeV)=0.427(92) from [34]. The

figures on left and right are the same distributions with di↵erent scales for x g(x) to enhance the view of the large-x region.

and determine the total uncertainty in the PDF. The statistical uncertainty of the gluon PDF determined from the
fit Eq. (35) and the uncertainty from the normalization using hxig are added in quadrature and the final uncertainty
is shown as the outer band in Fig. 12.

As discussed in [85], from the fitting of the ITD constructed from the NNPDF x g(x) distribution, one needs the
lattice data beyond ⌫ ⇠ 15 to evaluate the gluon distribution in the small-x region. In the present calculation, we can
extract the ITD up to ⌫ ⇠ 7.07. Therefore, the larger uncertainty and di↵erence in the small-x region determined from
the lattice data is expected. As a cautionary remark, we also remind the readers that we have not included the mixing
of the gluon operator with the quark singlet sector in the present calculation. Moreover, this calculation is performed
at the unphysical pion mass and in principle, physical pion mass, continuum, and infinite volume extrapolation
should be performed for a proper comparison with the phenomenological distribution. Therefore, it remains a matter
of future investigation to draw a more specific conclusion about the x g(x) distribution extracted from the lattice
QCD calculation in the large-x region. We also note that the shrinking of the statistical uncertainty band in the PDF
near x ⇠ 0.15 results from the correlation of the PDF fit parameters. This feature has also been seen in previous
works [32, 39, 48, 50].

However, within these limitations, we find the large-x distribution is in reasonable agreement with the global fits
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In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon
from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on
a 323 × 64 ensemble with a pion mass of 358 MeV and lattice spacing of 0.094 fm. We construct the
nucleon interpolating fields using the distillation technique, flow the gauge fields using the gradient flow,
and solve the summed generalized eigenvalue problem to determine the gluonic matrix elements.
Combining these techniques allows us to provide a statistically well-controlled Ioffe-time distribution
and unpolarized gluon parton distribution function. We obtain the flow time independent reduced Ioffe-
time pseudodistribution and calculate the light-cone Ioffe-time distribution and unpolarized gluon
distribution function in the MS scheme at μ ¼ 2 GeV, neglecting the mixing of the gluon operator with
the quark singlet sector. Finally, we compare our results to phenomenological determinations.

DOI: 10.1103/PhysRevD.104.094516

I. INTRODUCTION

Gluons, which carry color charge and serve as the
mediator bosons of the strong interaction, play a key role
in the nucleon’s mass and spin. Confinement in quantum
chromodynamics (QCD) ensures that no free quarks or
gluons have been observed, so analyses of hadrons involv-
ing high energy scattering rely on QCD factorization [1].
Factorization separates the perturbatively calculable hard-
scattering quark and gluon dynamics from the nonpertur-
bative collinear dynamics, described by parton distribution
functions (PDFs) of the relevant hadrons.
There are long-standing efforts to conduct global analy-

ses [2–6] of data from available deep inelastic scattering
(DIS) and related hard scattering processes to explore the
nature of the PDFs. It is essential to have a clear and precise
understanding of the gluon PDF in order to calculate the

cross section for Higgs boson production [7] and jet
production [8] at the Large Hadron Collider (LHC) and
J=ψ photo production [9] at Jefferson Lab. Future colliders,
such as the Electron Ion Collider (EIC) [10–12], which is to
be built at Brookhaven National Lab, and the Electron Ion
Collider in China (EicC) [13], are expected to make a
significant impact on the precision of the gluon PDFs.
While the precision of the extracted gluon distribution
xgðxÞ has been improved over the last decade, several
issues remain unresolved; for example, the suppression in
the momentum fraction region 0.1 < x < 0.4when ATLAS
and CMS jet data are included [3] and how to obtain a more
precise determination of gðxÞ are subjects of ongoing
efforts.
The determination of PDFs from lattice QCD is of

particular theoretical interest to directly explore the non-
perturbative sector of QCD from the first principles. To
achieve this goal, there have been several proposals for the
extraction of the x-dependent hadron structure from lattice
QCD calculations, such as the path-integral formulation of
the deep-inelastic scattering hadronic tensor [14], the
operator product expansion [15], quasi-PDFs [16,17],
pseudo-PDFs [18], and lattice cross sections [19,20].
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 Towards determining gluon helicity distribution
For gluon helicity distribution

�Mµ↵;��(z, p) ⌘< p, s|Gµ↵(z)[z, 0] eG��(0)|p, s >

To determine polarized gluon Ioffe-time distribution

�M0i;0i +�Mij;ij = �2p0pz


�Mps � (1 +m2

N/p2z)⌫�Mpp

�
Lattice

[�Mps � ⌫�Mpp](⌫, µ
2) =

Z 1

0
dx x�g(x) sin(x⌫)
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Simultaneous correlated fit to matrix elements for all         
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Lattice QCD matrix elements with 1899 cofigs
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Lattice QCD matrix elements with 1899 cofigs
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�G(µ2) =

Z 1

0
d⌫ �Mlight�cone(⌫, µ

2)

Gluon helicity from light cone Ioff-time distribution

Prospect of Lattice QCD on gluon helicity distribution

�G(µ2) ⇠ 0.42

�G(µ2) ⇠ 0.23

LQCD determination of  polarized gluon ITD, even at small  
Ioffe-time window can have important impact
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Summary & Outlook

In progress: unpolarized gluon distribution with 5 times stats

Thank you! 21

Future consideration: mixing of quark-gluon operator

Calculation of gluon helicity ITD

Challenge: many systematics to be understood


