The Continuum and Leading Twist Limits of pseudo-PDFs

Columbia University
IN THE CITY OF NEW YORK

Based on JK, K. Orginos, A. Radyushkin, S. Zafeiropoulos,
(2021) 2105.13313

HadStruc Collaboration

Along with
A. Radyushkin (OId Dominion U / JLab)
S. Zafeiropoulos (Aix-Marseille)

HadStruc Collaboration

- Carl Carlson, Chris Chamness, Tanjib Khan, Dan Kovner, Chris Monahan, Kostas Orginos, Raza Sufian (W\&M)
- Patrick Barry, Robert Edwards, Colin Egerer, Nikhil Karthik, Jian-Wei Qiu, David Richards, Eloy Romero, Frank Winter (JLab)
- Wayne Morris, Anatoly Radyushkin (ODU)
- Bálint Joó (ORNL)
- Savvas Zafeiropoulos (Aix-Marseille)
- Joe Karpie (Columbia U)

Other HadStruc talks!
Today: Colin Egerer, Patrick Barry
Wednesday: Nikhil Karthik, Wayne Morris, Raza Suffian

LaMET and SDF

- Two related methods to analyze the space-like separated fields with Large Momentum Effective Theory (quasi-PDF) or Short Distance Factorization (pseudo-PDF) to obtain PDFs
- LaMET/SDF and the PDF
- LaMET: factorization relation and power expansion with respect to large momentum scale p_{z}^{-2} X. Ji (2013) 1305.1539
- SDF: factorization relation and power expansion with respect to short distance scale z^{2}
V. Braun and D. Müller (2007) 0709.1348
A. Radyushkin (2017) 1705.01488
Y. Q. Ma and J. W. Qiu (2017) 1709.03018
- Wilson Line Operator matrix element

$$
M^{\alpha}(p, z)=\langle p| \bar{\psi}(z) \gamma^{\alpha} W(z ; 0) \psi(0)|p\rangle
$$

- Lorentz Composition

$$
M^{\alpha}(p, z)=2 p^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)+2 z^{\alpha} \mathcal{N}\left(\nu, z^{2}\right) \text { в. Musch etal (2010) 1011.1213 }
$$

LaMET and SDF

- Two related methods to analyze the space-like separated fields with Large Momentum Effective Theory (quasi-PDF) or Short Distance Factorization (pseudo-PDF) to obtain PDFs
- LaMET and SDF
- LaMET: factorization and power expansion with respect to large momentum scale p_{z}^{-2} X. Ji (2013) 1305.1539
- SDF: factorization and power expansion with respect to short distance scale z^{2}
V. Braun and D. Müller (2007) 0709.1348
- SDF begins with the OPE with a short distance scale
A.Radyushkin (2017) 1705.01488
Y. Q. Ma and J. W. Qiu (2017) 1709.03018
- Euclidean space matrix elements with power corrections can be ordered by twist
- The SDF's leading twist kernel is related to LaMET's kernel by integral formula.
$\mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d u K\left(u, \mu^{2} z^{2}\right) Q\left(u \nu, \mu^{2}\right)+O\left(z^{2}\right)$
T. Izubuchi et al (2018) 1801.03917
- Known to $O\left(\alpha_{s}\right) \begin{aligned} & \text { A. Radyushkin (2017) 1710.08813 } \\ & \begin{array}{l}\text { J.-H. Zhang et. al. (2018) } 1801.03023 \\ \text { T. Izubuchi et. al. (2018) } 1801.03917\end{array}\end{aligned} O\left(\alpha_{s}^{2}\right)$ Z-Y Li, Y-Q Ma, J-Q Qiu (2020) 2006.12370

The Reduced distribution and renormalization

- The pseudo-ITD is subject to many systematic errors
A.Radyushkin (2017) 1705.01488
T. Izubuchi et al (2020) 2007.06590
- Lattice spacing, higher twist, incorrect pion mass, finite volume
- A ratio can remove renormalization constants and the low loffe time systematic errors
- Avoids additional gauge fixed scheme dependent RI-Mom calculations
- Is a renormalization group invariant quantity, guaranteeing finite continuum limit (no power divergences)

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\frac{M^{0}(p, z) / M^{0}(p, 0)}{M^{0}(0, z) / M^{0}(0,0)}
$$

$$
M^{\alpha}(p, z)=2 p^{\alpha} \mathcal{M}\left(\nu, z^{2}\right)+2 z^{\alpha} \mathcal{N}\left(\nu, z^{2}\right)
$$

- New ratio method with non-zero momentum could remove different HT errors

The Reduced distribution and renormalization

A.Radyushkin (2017) 1705.01488
T. Izubuchi et al (2020) 2007.06590

- Ratios of hadronic matrix elements can cancel the non-perturbative higher twist contributions
- What region of loffe time depend on the denominator used
$\mathcal{M}\left(\nu, z^{2}\right)=\mathcal{M}^{\mathrm{lt}}\left(\nu, z^{2}\right)+\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right) B(\nu)$
$\mathfrak{M}\left(\nu, \nu_{0}, z^{2}\right)=\frac{\mathcal{M}\left(\nu, z^{2}\right)}{\mathcal{M}\left(\nu_{0}, z^{2}\right)}=\mathfrak{M}^{\mathrm{lt}}\left(\nu, \nu_{0}, z^{2}\right)+\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)\left(B(\nu)-B\left(\nu_{0}\right)\right)$
- Residual higher twist effects are significantly smaller than would be in other ratios, such as quark matrix elements RI-Mom or vacuum matrix elements
- Similar improvement for all systematic errors!

Systematic errors of Lattice PDFs

- Pion mass
- Just use correct values (duh!) C. Alexandrou et al (2018) 1803.02685
- Extrapolate PDF to physical pion mass
- Finite Volume
- Calculate size of effects in a model theory
R. Briceño et al (2018) 1805.01034 and (2021) 2102.01814
- Parameterize unknown functional dependence
- Lattice Spacing
- Parameterizing unknown functional dependence X. Gao et al (2020) 2007.06590
B. Joó, JK, K. Orginos, A. Radyushkin, D. Richards, R. Sufian, S. Zafeiropoulos (2019) 1908.09771
B. Joó, JK, K. Orginos, A. Radyushkin, D. Richards,
R. Sufian, S. Zafeiropoulos (2019) 1909.08517
R. Sufian, C. Egerer, JK, R. Edwards, B. Joó, Y-Q Ma,
K. Orginos, J-W Qiu, D. Richards (2020) 2001.04960
B. Joó, JK, K. Orginos, A. Radyushkin, D. Richards, S. Zafeiropoulos (2020) 2004.01687
- Interpolate data at fixed hard scale and extrapolate continuum limit
C. Alexandrou et al (2020) 2011.00964
H.-W. Lin et al (2020) 2011.14971
- Power Corrections
- LaMET p_{z}^{-2}
- SDF and Lattice Cross Sections z^{2}
- Parameterizing unknown functional dependence
- OPE without OPE and Hadronic Tensors Q^{-2}
- Inverse Problems
- Get back to these later

Unknown functions

- Want to determine a continuous unknown function from the data
- Lattice systematic errors
- Lattice spacing is the only one used in this study
- No momentum corrections J-W Chen et al (2017) 1710.01089

$$
\mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu)
$$

- Power Corrections
$\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)=\mathfrak{M}_{\mathrm{lt}}\left(\nu, z^{2}\right)+\sum_{n=1}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)^{n} B_{n}(\nu)$
- Factorization of the PDF

$$
n=1
$$

$\operatorname{Re} / \operatorname{Im} \mathfrak{M}_{\mathrm{lt}}\left(\nu, z^{2}\right)=\int_{0}^{1} d x \mathcal{K}_{R / I}\left(x \nu, \mu^{2} z^{2}\right) q_{\mp}\left(x, \mu^{2}\right)$

Inverse Problem Solutions for Lattice PDFs

- Parametric
- Fit a phenomenologically motivated function
- Method used by most pheno extractions
- Potentially significant, but controllable model dependence
- Fit to a neural network S. Forte, L. Garrido, J. Latorre, A. Piccione (2002) 0204232
- Machine learning is hip
K. Cichy, L. Del Debbio, T. Giani (2019) 1907.06037
- Expensive tuning procedure L. Del Debbio, T. Giani, JK, K. Orginos, A. Radyushkin,
- Non-Parametric
S. Zafeiropoulos (2020) 2010.03996
- Backus-Gilbert J. Liang, K-F. Liu, Y-B. Yang (2017) 1710.11145
- No model dependence, one tunable parameter
- Bayesian Reconstruction Y. Burnier and A. Rothkopf (2013) 1307.6106, J. Liang et al (2019) 1906.05312
- Very general, Bayesian statistics has systematics included in meaningful way
- Bayes-Gauss-Fourier transform
C. Alexandrou, G. Iannelli, K. Jansen, F. Manigrasso (2020) 2007.13800

Jacobi Polynomials

- Orthogonal set of Polynomials
- Textbook orthogonality relationship $\int_{-1}^{1} d z(1-z)^{\alpha}(1+z)^{\beta} j_{n}^{(\alpha, \beta)}(z) j_{m}^{(\alpha, \beta)}(z)=\tilde{N}_{n}^{(\alpha, \beta)} \delta_{n, m}$
- Change variables for more useful metric and integration range: $z=1-2 x$

$$
\begin{aligned}
& \int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} J_{n}^{(\alpha, \beta)}(x) J_{m}^{(\alpha, \beta)}(x)=N_{n}^{(\alpha, \beta)} \delta_{n, m} \\
& J_{n}^{(\alpha, \beta)}(x)=\sum_{j=0}^{n} \omega_{n, j}^{(\alpha, \beta)} x^{j}
\end{aligned}
$$

$$
\omega_{n, j}^{(\alpha, \beta)}=\binom{n}{j} \frac{(-1)^{j}}{n!} \frac{\Gamma(\alpha+n+1) \Gamma(\alpha+\beta+n+j+1)}{\Gamma(\alpha+\beta+n+1) \Gamma(\alpha+j+1)}
$$

$$
\alpha=-0.5, \quad \beta=3
$$

Jacobi Polynomial parameterizations

- Parameterize unknown functions

$$
\text { Example: PDFs } q_{ \pm}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0} \pm d_{n}^{(\alpha, \beta)} J_{n}^{(\alpha, \beta)}(x)
$$

- How to Fourier transform of this parameterization

$$
\begin{aligned}
\sigma_{0, n}^{(\alpha, \beta)}(\nu) & =\int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} \cos (\nu x) J_{n}^{(\alpha, \beta)}(x) \\
\eta_{0, n}^{(\alpha, \beta)}(\nu) & =\int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} \sin (\nu x) J_{n}^{(\alpha, \beta)}(x)
\end{aligned}
$$

$\operatorname{Re} Q(\nu)=\sum_{n=0} \sigma_{0, n}^{(\alpha, \beta)}(\nu)_{-} d_{n} \quad \operatorname{Im} Q(\nu)=\sum_{n=0} \eta_{0, n}^{(\alpha, \beta)}(\nu)_{+} d_{n}$

Jacobi Polynomial parameterizations

- Decays to 0 with loffe time
- Large n only at large loffe time if coefficients are small

Jacobi Polynomial parameterizations

A. Radyushkin (2017) 1710.08813

- Including the factorization kernel

$$
O\left(\alpha_{s}^{2}\right) \quad \text { Z-Y Li, Y-Q Ma, J-Q Qiu 2006.12370 }
$$

$$
\begin{aligned}
& \sigma_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)= \int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} \mathcal{K}_{R}\left(x \nu, \mu^{2} z^{2}\right) J_{n}^{(\alpha, \beta)}(x) \\
& \sigma_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)=\sigma_{0, n}^{(\alpha, \beta)}(\nu)+\sigma_{n}^{(\mathrm{NLO})}\left(\nu, \mu^{2} z^{2}\right)+O\left(\alpha_{S}^{2}\right) \\
& \eta_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)= \int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} \mathcal{K}_{I}\left(x \nu, \mu^{2} z^{2}\right) J_{n}^{(\alpha, \beta)}(x) \\
& \eta_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)=\eta_{0, n}^{(\alpha, \beta)}(\nu)+\eta_{n}^{(\mathrm{NLO})}\left(\nu, \mu^{2} z^{2}\right)+O\left(\alpha_{S}^{2}\right)
\end{aligned}
$$

- Parameterize leading twist pseudo-ITD instead of ITD

$$
\begin{aligned}
& \operatorname{Re} \mathfrak{M}_{\mathrm{lt}}\left(\nu, z^{2}\right)=\sum_{n=0} \sigma_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)_{-} d_{n} \\
& \operatorname{Im} \mathfrak{M}_{\mathrm{lt}}\left(\nu, z^{2}\right)=\sum_{n=0} \eta_{n}^{(\alpha, \beta)}\left(\nu, \mu^{2} z^{2}\right)_{+} d_{n}
\end{aligned}
$$

Jacobi Polynomial parameterizations
 $$
z=4 a_{\mathrm{E} 5}
$$

- Remains small function loffe time, generating small perturbative corrections at NLO

$$
\alpha=-0.5, \quad \beta=3
$$

- Future work will expand to NNLO

Jacobi Polynomial parameterizations

- Final functional form

$$
\begin{array}{ll}
\text { ITD } & \mathrm{HT}
\end{array}
$$

$\operatorname{Re} \mathfrak{M}(p, z, a)=\sum_{n=0}^{N_{-}+1} \sigma_{n}\left(\nu, \mu^{2} z^{2}\right)_{-} d_{n}^{(\alpha, \beta)}+z^{2} \Lambda_{\mathrm{QCD}} \sum_{n=1}^{N_{R, b}} \sigma_{0, n}(\nu) b_{R, n}^{(\alpha, \beta)}+a \Lambda_{\mathrm{QCD}} \sum_{n=1}^{N_{R, r}} \sigma_{0, n}(\nu) r_{R, n}^{(\alpha, \beta)}+\frac{a}{|z|} \sum_{n=1}^{N_{R, p}} \sigma_{0, n}(\nu) p_{R, n}^{(\alpha, \beta)}$
$\operatorname{Im} \mathfrak{M}(p, z, a)=\sum_{n=0}^{N_{+}} \eta_{n}\left(\nu, \mu^{2} z^{2}\right)_{+} d_{n}^{(\alpha, \beta)}+z^{2} \Lambda_{\mathrm{QCD}} \sum_{n=1}^{N_{I, b}} \eta_{0, n}(\nu) b_{I, n}^{(\alpha, \beta)}+a \Lambda_{\mathrm{QCD}} \sum_{n=1}^{N_{I, r}} \eta_{0, n}(\nu) r_{I, n}^{(\alpha, \beta)}+\frac{a}{|z|} \sum_{n=1}^{N_{I, p}} \eta_{0, n}(\nu) p_{I, n}^{(\alpha, \beta)}$

- Normalization of PDF

$$
-d_{0}^{(\alpha, \beta)}=1 / B(\alpha+1, \beta+1)
$$

Bayesian Fits

$$
P\left[\theta \mid \mathfrak{M}_{L}, I\right]=\frac{P\left[\mathfrak{M}_{L} \mid \theta\right] P[\theta \mid I]}{P\left[\mathfrak{M}_{L} \mid I\right]}
$$

- Standard χ^{2} minimization, but with modified function

$$
\begin{aligned}
& P\left[\mathfrak{M}_{L} \mid \theta\right]=\frac{\exp \left[-\frac{\chi^{2}}{2}\right]}{Z_{\chi}} \quad \chi^{2}=\sum_{k, l}\left(\mathfrak{M}_{k}^{L}-\mathfrak{M}_{k}\right) C_{k l}^{-1}\left(\mathfrak{M}_{l}^{L}-\mathfrak{M}_{l}\right) \\
& P\left[\theta \mid \mathfrak{M}_{L}, I\right]=\frac{\exp \left[-\frac{L^{2}}{2}\right]}{Z} \quad L^{2}=\chi^{2}-2 \log (P[\theta \mid I])
\end{aligned}
$$

- Prior Distributions
- Uniform distribution within bounds
- Normal distribution
- Log-Normal distribution
- Additional terms are designed to push weakly push the maximum probability to "reasonable" values

Lattice ensembles

ID	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	β	$c_{\text {SW }}$	κ	$L^{3} \times T$	$N_{\text {cfg }}$
$\widetilde{A} 5$	$0.0749(8)$	$446(1)$	5.2	2.01715	0.13585	$32^{3} \times 64$	1904
E5	$0.0652(6)$	$440(5)$	5.3	1.90952	0.13625	$32^{3} \times 64$	999
N5	$0.0483(4)$	$443(4)$	5.5	1.75150	0.13660	$48^{3} \times 96$	477

- E5 and N5 were generated as part of CLS collaboration P. Fritzsch etal (2012) 1205.5380
- Ã5 was generated for this study
- Three lattice spacings for lattice spacing dependence
- Fixed pion mass
- Will ignore the difference between physical volumes until future work

Reduced Matrix Elements

Chi squared of fits

$$
N_{ \pm}=2 \quad N_{R / I, b / p / r}=0,1
$$

model	Real $L^{2} /$ d.o.f.	Real $\chi^{2} /$ d.o.f.	Imag $L^{2} /$ d.o.f.	Imag $\chi^{2} /$ d.o.f.
Q only	3.173	3.094	3.146	3.095
Q and B_{1}	2.721	2.479	3.054	2.969
Q and R_{1}	3.028	2.748	3.068	2.871
Q and P_{1}	0.876	0.809	1.186	1.088
Q, B_{1}, and R_{1}	2.610	2.057	2.917	2.619
Q, B_{1}, and P_{1}	0.852	0.723	1.020	0.888
Q, R_{1}, and P_{1}	0.881	0.763	1.289	1.063
All terms	0.857	0.727	1.026	0.893

Study nuisance terms

$$
N_{ \pm}=2 \quad N_{R / I, b / p / r}=1
$$

$$
z=4 a_{\mathrm{E} 5}
$$

Study nuisance terms

$$
N_{ \pm}=2 \quad N_{R / I, b / p / r}=1
$$

$$
\begin{equation*}
z=4 a_{\mathrm{E} 5} \tag{21}
\end{equation*}
$$

AICc averaging

- Akaike Information Criteria (AIC)
R. Zhang et al (2020) 2005.13955
- Adds weight to disfavor models with too many parameters

$$
\text { H.-W. Lin et al (2020) } 2011.14971
$$

$$
a_{i}=2 k_{i}+2 L_{i}^{2}
$$

- Corrected AIC (AICc)
- Used when few number of datapoints compared to number of parameters

$$
A_{i}=a_{i}+\frac{2 k(k+1)}{n-k-1}
$$

- Weighted average to determine expectation values of observables
- Ideally, averages away model biases

$$
x=\sum_{i=1}^{N} w_{i} x_{i}, \quad w_{i}=\frac{e^{-\frac{A_{i}}{2}}}{\sum_{i=1}^{N} e^{-\frac{A_{i}}{2}}}
$$

AICc averaging

- Use a range of models for the AICc weighted average
- To average away model biases, sufficiently many distinct models are required
- Undesirable models could be removed, or their large AICc will exponentially suppress them in the weighted average
- For this study will use models with

$$
\begin{aligned}
& N_{ \pm}=1,2,3 \\
& N_{R / I, b / p / r}=0, \ldots, N_{ \pm}
\end{aligned}
$$

Averaged Results

Conclusions and Outlook

- Jacobi polynomial parameterizations allow for a systematically controlled determination of the PDF
- With more ensembles, other systematics can be included in the same fashion
- Pion mass dependence, finite volume, perturbative truncation
- Can be used with different observables
- Parameterizing in x space allows for loffe time functions which decay to 0 at large loffe time
- Also avoids intermediate matching between pseudo-ITD and ITD in our previous works
- We have studied a range of the number of parameters to attempt to handle model dependence with AIC/AICc averaging
- Truly distinct models, parametric and non-parametric, are required to completely remove remaining model dependent biases

