Disentangling Long and Short Distances in Momentum-Space TMDs

Zhiquan Sun (MIT)

Markus Ebert (MPI Munich), Johannes Michel (MIT), lain Stewart (MIT)
[to appear]

LaMET 2021
December 9, 2021

Massachusetts
Institute of
Technology

TMDPDFs

- Factorization of Drell-Yan cross section:

$$
\frac{d \sigma}{d Q d Y d^{2} q_{T}}=H(Q, \mu) \sum_{i} \int d^{2} \vec{b}_{T} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} f_{i}\left(x_{a}, b_{T}, \mu, \zeta_{a}\right) f_{\bar{i}}\left(x_{b}, b_{T}, \mu, \zeta_{b}\right) \times\left[1+\mathcal{O}\left(\frac{q_{T}^{2}}{Q^{2}}\right)\right]
$$

Hard virtual corrections

Describe transverse momentum of the partons

- Most easily written in position space

$$
\mu=\text { Renormalization scale }
$$

$$
\zeta=\text { Collins-Soper parameter }
$$

$$
\zeta_{a} \zeta_{b}=Q^{4}
$$

TMDPDFs

- Factorization of Drell-Yan cross section:

$$
\frac{d \sigma}{d Q d Y d^{2} q_{T}}=H(Q, \mu) \sum_{i} \int d^{2} \vec{b}_{T} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} f_{i}\left(x_{a}, b_{T}, \mu, \zeta_{a}\right) f_{\bar{i}}\left(x_{b}, b_{T}, \mu, \zeta_{b}\right) \times\left[1+\mathcal{O}\left(\frac{q_{T}^{2}}{Q^{2}}\right)\right]
$$

- Measurements are done in momentum space!

(Non)perturbative TMDPDFs

- Challenging to use the nonperturbative info that lattice provides
- Modeling TMDPDFs with both perturbative and nonperturbative parts is usually done by introducing b^{*} :

$$
f_{i}\left(x, b_{T}, \mu, \zeta\right)=f_{\mathrm{pert}, i}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right)
$$

$$
\text { Calculated with expansion in } \alpha_{s}\left(1 / b_{T}\right)
$$

- The perturbative part can be computed with an operator product expansion (OPE):

$$
\begin{aligned}
f_{\text {pert, } i}^{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right) & =\sum_{j} \int_{x}^{1} \frac{d z}{z} C_{i j}\left(\frac{x}{z}, b_{T}, \mu, \zeta\right) f_{j}^{\text {coll }}(z, \mu) \\
& =f_{i}^{\text {coll }}(x, \mu)+\alpha_{s} C_{i j}^{(1)} \otimes f_{j}^{\text {coll }}(x, \mu)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Modeling TMDPDFs

- Modeling TMDPDFs with both perturbative and nonperturbative parts is usually done by introducing b^{*} :

$$
f_{i}\left(x, b_{T}, \mu, \zeta\right)=f_{\text {pert }, i}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right)
$$

- $b^{*}\left(b_{T}\right)$ shields the Landau pole
- $b_{T} \ll 1 / \Lambda_{\mathrm{QCD}}: b^{*}\left(b_{T}\right) \rightarrow b_{T}, f_{\mathrm{NP}} \rightarrow 1$
$f_{\text {pert }}$ dominates
- $b_{T} \gg 1 / \Lambda_{\mathrm{QCD}}: b^{*}\left(b_{T}\right) \rightarrow$ constant
f_{NP} dominates

Modeling TMDPDFs

- Different models of f_{NP} are used for fitting to data
- $b^{*}\left(b_{T}\right)$ shields the Landau pole and is coupled to f_{NP}

$$
\begin{aligned}
f_{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right) & =f_{\text {pert }}\left(x, b_{A}^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}^{A}\left(x, b_{T}, \zeta\right) \\
& =f_{\text {pert }}\left(x, b_{B}^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}^{B}\left(x, b_{T}, \zeta\right)
\end{aligned}
$$

$b_{A}^{*}\left(b_{T}\right) \neq b_{B}^{*}\left(b_{T}\right) \quad \Rightarrow \quad f_{\mathrm{NP}}^{A}\left(x, b_{T}\right)$ and $f_{\mathrm{NP}}^{B}\left(x, b_{T}\right)$ are not comparable!

- The perturbative and nonperturbative effects are mixed up!

Modeling TMDPDFs

- b^{*} prescriptions makes different f_{NP} not comparable
- For example, take the same $f_{\mathrm{NP}}\left(b_{T}\right)=e^{-\left(0.5 \mathrm{GeV} b_{T}\right)^{2}}$,
use either $b_{\mathrm{CS}}^{*}\left(b_{T}\right)$ or $b_{\text {Pavia }}^{*}\left(b_{T}\right)$:

- Goal: extract nonperturbative physics without b^{*} contamination

Momentum Space

- Measurements are in q_{T} space: Fourier transform

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}} & =2 \pi q_{T} \int_{0}^{\infty} \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i q_{T} \cdot \vec{b}_{T}} \sigma\left(b_{T}\right) \\
q_{T} \text { spectrum } & =q_{T} \int_{0}^{\infty} d b_{T} b_{T} \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{i q_{T} b_{T} \cos \phi} \sigma\left(b_{T}\right)=q_{T} \int_{0}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) \sigma\left(b_{T}\right)
\end{aligned}
$$

- For perturbative q_{T}, integral still includes nonperturbative b_{T} !
- Intuition: perturbative q_{T} should be dominated by perturbative $b_{T} \sim 1 / q_{T}$

Momentum Space

- Intuition: perturbative q_{T} should be dominated by perturbative b_{T}
- Goal: make this intuition manifest
- Solution: introducing $b_{T}^{\text {cut }}$ Can use perturbative OPE Nonperturbative physics

$$
S[f]\left(q_{T}\right) \equiv q_{T} \int_{0}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)=S_{<}[f]\left(q_{T}\right)+S_{>}[f]\left(q_{T}\right)
$$

full spectrum

$$
\begin{aligned}
& S_{<}[f]\left(q_{T}\right) \equiv q_{T} \int_{0}^{b_{T}^{\mathrm{cut}}} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right) \\
& S_{>}[f]\left(q_{T}\right) \equiv q_{T} \int_{b_{T}^{\mathrm{cut}}}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right) \\
& \mathbf{9 / 2 4}
\end{aligned}
$$

Truncated Functionals

- Want to approximate $S[f]$ using perturbative $b_{T} \leq b_{T}^{\text {cut }}$
- Can use $S_{<}[f]$, but need to systematically account for $S_{>}[f]$

$$
S_{>}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=q_{T} \int_{b_{T}^{\text {cut }}}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)
$$

Assumption:

a) $f\left(b_{T} \rightarrow \infty\right)<b_{T}^{-\rho}, \rho>\frac{1}{2}$
b) $f\left(b_{T}\right)$ differentiable at $b_{T}^{\text {cut }}$

$=-b_{T}^{\text {cut }} \underbrace{J_{1}\left(q_{T} b_{T}^{\text {cut }}\right.}) f\left(b_{T}^{\text {cut }}\right)-\int_{b_{T}^{\text {cut }}}^{\infty} d b_{T} b_{T} J_{1}\left(q_{T} b_{T}\right) \underbrace{f^{\prime}\left(b_{T}\right)}_{<b_{T}^{-\rho-1}}$
asymptotic form $\backslash q_{T} \gg 1 / b_{T}^{\text {cut }}>\Lambda_{\mathrm{QCD}}$
$=\sqrt{\frac{2 b_{T}^{\mathrm{cut}}}{\pi q_{T}}} \cos \left(q_{T} b_{T}^{\mathrm{cut}}+\frac{\pi}{4}\right) f\left(b_{T}^{\mathrm{cut}}\right)+\mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} q_{T}\right)^{-\frac{3}{2}}\right]$
$J_{0}(x \rightarrow \infty)=\sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}\right)+\mathcal{O}\left(x^{-\frac{3}{2}}\right)$
$J_{1}(x \rightarrow \infty)=-\sqrt{\frac{2}{\pi x}} \cos \left(x+\frac{\pi}{4}\right)+\mathcal{O}\left(x^{-\frac{3}{2}}\right)$

Truncated Functionals

- Define a systematic series to approximate $S[f]$ using $b_{T} \leq b_{T}^{\text {cut }}$

$$
S^{(0)}[f]\left(q_{T}\right) \equiv S_{<}[f]\left(q_{T}\right)=q_{T} \int_{0}^{b_{T}^{\mathrm{cut}}} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)
$$

- Define $S^{(1)}[f]$ to include leading boundary contribution from $S_{>}[f]$

$$
S^{(1)}[f]\left(q_{T}\right) \equiv S^{(0)}[f]+\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}} \cos \left(q_{T} b_{T}^{\text {cut }}+\frac{\pi}{4}\right) f\left(b_{T}^{\text {cut }}\right) \longleftarrow \text { First correction! }
$$

$$
S[f]\left(q_{T}\right)=S^{(1)}[f]\left(q_{T}, b_{T}^{\mathrm{cut}}\right)+\frac{1}{q_{T}} \mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} q_{T}\right)^{-\frac{1}{2}}\right]
$$

Truncated Functionals

- Systematically add on power corrections

$$
\text { so } S^{(n)}[f] \rightarrow S[f]
$$

$$
S^{(0)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=\int_{0}^{b_{T}^{\text {ut }}} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)
$$

$$
S^{(1)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=S^{(0)}[f]+\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}} f\left(b_{T}^{\text {cut }}\right) \cdot \cos \left(b_{T}^{\text {cut }} q_{T}+\frac{\pi}{4}\right)
$$

$S^{(2)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=S^{(1)}[f]-\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}}\left(\frac{3 f\left(b_{T}^{\text {cut }}\right)}{8 b_{T}^{\text {cut }} q_{T}}+\frac{f^{\prime}\left(b_{T}^{\text {cut }}\right)}{q_{T}}\right) \cdot \cos \left(b_{T}^{\text {cut }} q_{T}-\frac{\pi}{4}\right)$
$S^{(3)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=S^{(2)}[f]+\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}}\left(\frac{15 f\left(b_{T}^{\text {cut }}\right)}{128 b_{T}^{\text {cut }} q_{T}^{2}}-\frac{7 f^{\prime}\left(b_{T}^{\text {cut }}\right)}{8 b_{T}^{\text {cut }} q_{T}^{2}}-\frac{f^{\prime \prime}\left(b_{T}^{\text {cut }}\right)}{q_{T}^{2}}\right) \cdot \cos \left(b_{T}^{\text {cut }} q_{T}+\frac{\pi}{4}\right)$

$$
S[f]\left(q_{T}\right)=S^{(n)}[f]+\frac{1}{q_{T}} \mathcal{O}\left[\left(b_{T}^{\text {cut }} q_{T}\right)^{-n+\frac{1}{2}}\right]
$$

Power Correction of Functionals

- Toy function $f=\exp \left[-C_{1} \ln ^{2}\left(b_{T} Q\right)\right] \exp \left[-C_{2} b_{T}^{2}\right]$
- Errors of truncated functionals follow expected power law

$$
S[f]\left(q_{T}\right)=S^{(n)}[f]+\frac{1}{q_{T}} \mathcal{O}\left[\left(b_{T}^{\text {cut }} q_{T}\right)^{-n+\frac{1}{2}}\right]
$$

Power Correction of Functionals

- Power expand toy function and use only "perturbative" input $f^{(0)}$

$$
f=\underbrace{\exp \left[-C_{1} \ln ^{2}\left(b_{T} Q\right)\right]}_{f^{(0)}}\left(1-C_{2} b_{T}^{2}+\mathcal{O}\left(b_{T}^{4}\right)\right)
$$

- "Errors" of truncated functionals identify missing quadratic term

Cumulative Functionals

- We are often interested in the cumulative distribution:

$$
\begin{aligned}
& \int_{\left|k_{T}\right| \leq k_{T}^{\text {cut }}} d^{2} \vec{k}_{T} f\left(k_{T}\right)=\int_{\left|k_{T}\right| \leq k_{T}^{\text {cut }}} d^{2} \vec{k}_{T} \int \frac{d^{2} b_{T}}{(2 \pi)^{2}} e^{+i \vec{k}_{T} \cdot \vec{b}_{T}} f\left(b_{T}\right) \\
&=\int^{\int_{T}^{k_{T}^{\mathrm{cut}}} d k_{T} k_{T} \int_{0}^{\infty} d b_{T} b_{T} J_{0}\left(b_{T} k_{T}\right) f\left(b_{T}\right)} \\
&=k_{T}^{\mathrm{cut}} \int_{0}^{\infty} d b_{T} J_{1}\left(b_{T} k_{T}^{\mathrm{cut}}\right) f\left(b_{T}\right) \\
& K[f]\left(k_{T}^{\mathrm{cut}}\right)
\end{aligned}
$$

- Approximate using perturbative region:

$$
K^{(0)}[f]\left(k_{T}^{\mathrm{cut}}, b_{T}^{\mathrm{cut}}\right)=k_{T}^{\mathrm{cut}} \int_{0}^{b_{T}^{\mathrm{cut}}} d b_{T} J_{1}\left(b_{T} k_{T}^{\mathrm{cut}}\right) f\left(b_{T}\right)
$$

Cumulative Functionals

- Systematically add on power corrections so $K^{(n)}[f] \rightarrow K[f]$

$$
\begin{aligned}
& K^{(0)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=k_{T}^{\text {cut }} \int_{0}^{b_{T}^{\text {cut }}} d b_{T} J_{1}\left(b_{T} k_{T}^{\text {cut }}\right) f\left(b_{T}\right) \\
& K^{(1)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=K^{(0)}[f]+f\left(b_{T}^{\text {cut }}\right) \cdot \frac{\cos \left(b_{T}^{c \mathrm{t} t} k_{T}^{\text {cut }}-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi}{2}}\left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}\right)^{1 / 2}} \\
& K^{(2)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=K^{(1)}[f]-\left(\frac{f\left(b_{T}^{\text {cut }}\right)}{\left.8 b_{T}^{\text {cut }} k_{T}^{\text {cut }}-\frac{f^{\prime}\left(b_{T}^{\text {cut }}\right)}{k_{T}^{\text {cut }}}\right) \cdot \frac{\cos \left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}+\frac{\pi}{4}\right)}{\sqrt{\frac{\pi}{2}}\left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}\right)^{1 / 2}}}\right. \\
& K^{(3)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=K^{(2)}[f]-\left(\frac{9 f\left(b_{T}^{\text {cut }}\right)}{128 b_{T}^{\text {cut } 2} k_{T}^{\text {cut }}}-\frac{5 f^{\prime}\left(b_{T}^{\text {cut }}\right)}{8 b_{T}^{\text {cut }} k_{T}^{\text {cut } 2}}+\frac{f^{\prime \prime}\left(b_{T}^{\text {cut }}\right)}{k_{T}^{\text {cut } 2}}\right) \cdot \frac{\cos \left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi}{2}\left(b_{T}^{\text {ct }} k_{T}^{\text {cut }}\right)^{1 / 2}}}
\end{aligned}
$$

$$
K[f]\left(k_{T}^{\mathrm{cut}}\right)=K^{(n)}[f]\left(k_{T}^{\mathrm{cut}}, b_{T}^{\mathrm{cut}}\right)+\mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} k_{T}^{\mathrm{cut}}\right)^{-n-\frac{1}{2}}\right]
$$

Power Correction of $K^{(n)}$

- Same toy function $f=\exp \left[-C_{1} \ln ^{2}\left(b_{T} Q\right)\right] \exp \left[-C_{2} b_{T}^{2}\right]$
- Errors of truncated functionals follow expected power law

$$
K[f]\left(k_{T}^{\mathrm{cut}}\right)=K^{(n)}[f]\left(k_{T}^{\mathrm{cut}}, b_{T}^{\mathrm{cut}}\right)+\mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} k_{T}^{\mathrm{cut}}\right)^{-n-\frac{1}{2}}\right]
$$

Apply Cumulative Functionals

- What's the normalization of the TMDPDFs?

$$
\begin{array}{r}
\int d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu, \zeta\right) \stackrel{?}{=} f^{\mathrm{coll}}(x, \mu) \\
\stackrel{\uparrow}{\text { naively yes :) }}
\end{array}
$$

- Renormalization breaks the naive expectation

$$
\begin{array}{r}
\mu \frac{d}{d \mu} \int d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu, \zeta\right) \neq \underset{\uparrow}{\mu \mu} \frac{d}{d \mu} f^{\text {coll }}(x, \mu) \\
\text { renormalization says no :(}
\end{array}
$$

Apply Cumulative Functionals

- We can systematically compute the normalization of the TMDPDF
- Cut off the integral in UV with $k_{T}^{\text {cut }}$

$$
\int_{\left|k_{T}\right| \leq k_{T}^{\text {cut }}} d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(k_{T}\right)=K\left[f^{\mathrm{TMD}}\right]\left(k_{T}^{\mathrm{cut}}\right)
$$

- Apply cumulative functional $K^{(3)}$ to compute the normalization!

$$
\begin{aligned}
& K\left[f^{\mathrm{TMD}}\right]\left(k_{T}^{\text {cut }}\right)=K^{(3)}\left[f_{\uparrow}^{\mathrm{TMD}}\right]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)+\mathcal{O}\left[\left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}\right)^{-\frac{7}{2}}\right] \\
& \begin{array}{c}
\text { Recall: we have perturbative } \\
\text { knowledge of } f^{\mathrm{TMD}} \text { from the OPE }
\end{array} \quad f_{\text {pert }, i}^{\mathrm{TMD}}=\sum_{j} \int \frac{d z}{z} C_{i j}\left(\frac{x}{z}, b_{T}, \mu, \zeta\right) f_{j}^{\text {coll }}(z, \mu)
\end{aligned}
$$

- Include N3LL evolution from boundary condition at $\zeta_{0} \sim 1 / b_{T}^{2}$ to overall ζ
- OPE matching coefficients up to two loops
- As implemented by SCETlib

Impact of Evolution Effects

- $K^{(3)}\left[f^{\mathrm{TMD}}\right]$ allows us to modelindependently access the evolution effects
- Intuitive expectation is robust in the vicinity of $\mu=\sqrt{\zeta}=k_{T}^{\text {cut }}$
- For $\mu=k_{T}^{\mathrm{cut}}$, the ζ evolution is negligible
- Sizable corrections from evolution away from these regions, due to the cusp anomalous dimension

$$
\int^{k_{T}^{\text {kut }}} d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu=k_{T}^{\text {cut }}, \zeta\right){ }_{\underline{\star}}^{\underline{\text { coll }}}\left(x, \mu=k_{T}^{\text {cutt }}\right)
$$

Impact of Nonperturbative Effects

- $\Delta_{\text {cut }}$ from varying $b_{T}^{\text {cut }}$
- Small corrections for large k_{T}^{cut}
- Significant NP effects for small $k_{T}^{\text {cut }}$
- Agree with SV and Pavia global fits which use b^{*}

SV: 1912.06532
Pavia: 1912.07550

Resummation Orders

- Perturbative uncertainty estimated by scale variations 2006.11382
- Increasing orders show convergence

- Resummation uncertainty as a function of x while keeping $k_{T}^{\text {cut }}$ fixed
- Central value can differ from zero (\pm $2 \%)$
- Agree with SV and Pavia global fits

Momentum-Space Spectrum

- Apply same procedures to q_{T} cross section

$$
\begin{aligned}
\sigma\left(b_{T}\right) & =H\left(Q, b_{T}\right) f_{\mathrm{TMD}}\left(x_{a}, b_{T}\right) f_{\mathrm{TMD}}\left(x_{b}, b_{T}\right) \exp \left[-L_{\zeta} \gamma_{\zeta}\right] \\
& =\sigma^{(0)}\left(b_{T}\right)\left[1+\left(\tilde{C}^{(2)}-L_{\zeta} \gamma_{\zeta}^{(2)}\right) b_{T}^{2}+\mathcal{O}\left(b_{T}^{4}\right)\right\rceil
\end{aligned}
$$

- The impact of $\gamma_{\zeta}^{(2)}$ is linear (the values chosen are representative and can be rescaled)
- Important to determine $\gamma_{\zeta}^{(2)}$ nonperturbatively from first principles!

Conclusions

- Perturbative and nonperturbative physics in TMDPDFs are usually hard to disentangle because of b^{*} prescriptions
- Truncated functionals provide a model-independent and systematically improvable method to map perturbative results from position to momentum space
- Demonstrated that integrating the unpolarized TMDPDF over [$0, k_{T}^{\mathrm{cut}}$] gives the collinear PDF to the percent level (when renormalization scale $\mu=k_{T}^{\text {cut }}$)
- Developed model-independent method to assess the impact of non-perturbative effects (OPE coefficients) in momentum space
Thank you!!!

Back-up Slides

Resummation Orders

- Resummation orders: as a function of $k_{T}^{\text {cut }}$

More on NP effects

