Calculation of the Second Moment of the Pion Light-Cone Distribution Amplitude

Massachusetts Institute of Technology

William Detmold, **Anthony Grebe**, Issaku Kanamori, David Lin, Santanu Mondal, Robert Perry, Yong Zhao

December 7, 2021

Light-Cone Distribution Amplitude

- Factor experimentally measurable processes into non-perturbative structure function times perturbative parton physics
- LCDA $\varphi_{\pi}(\xi)$ represents amplitude for π transitioning into $q\bar{q}$ pair with momenta $(1+\xi)p/2$, $(1-\xi)p/2$
- Formally defined via

$$\langle 0|ar{d}(-z)\gamma_{\mu}\gamma_{5}\mathcal{W}[-z,z]u(z)|\pi^{+}(p)\rangle=ip_{\mu}f_{\pi}\int_{-1}^{1}d\xi\,e^{-i\xi p\cdot z}\varphi_{\pi}(\xi)$$

Lattice Determination of LCDA

Our approach: expand LCDA into Mellin moments

$$\langle \xi^n \rangle = \int_{-1}^1 d\xi \, \xi^n \varphi_\pi(\xi)$$

- This talk: Computation of $\langle \xi^2 \rangle$
- Next talk (Robert Perry): Exploratory computation of $\langle \xi^4 \rangle$
- Previous lattice calculations
 - Local matrix elements
 - Light-quark operator product expansion
 - Quasi-PDF and pseudo-PDF (determine $\varphi_{\pi}(\xi)$ without recourse to moments)

Heavy-Quark Operator Product Expansion (HOPE)

Heavy-Quark Operator Product Expansion (HOPE)

• Hadronic tensor can be expanded in terms of moments

$$V^{\mu\nu}(p,q) = \frac{2if_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty}\frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

with
$$\tilde{\omega}=2p\cdot q/\tilde{Q}^2$$
 and $\tilde{Q}^2=-q^2-m_{
m W}^2$

• Heavy quark mass m_{Ψ} suppresses higher-twist effects

Hadronic Tensor

$$V^{\mu\nu}(q,p) = \int d^4x \, e^{i\mathbf{q}\cdot\mathbf{x}} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{\mathbf{x}}{2} \right) A^{\nu} \left(-\frac{\mathbf{x}}{2} \right) \right] \right| \pi^+(p) \right\rangle$$

$$\int dq_4 e^{-iq_4\tau} V^{\mu\nu}(q,p) = \int d^3\mathbf{x} \, e^{i\mathbf{q}\cdot\mathbf{x}} \left\langle 0 \left| \mathcal{T} \left[A^{\mu} \left(\frac{\mathbf{x}}{2}, \frac{\tau}{2} \right) A^{\nu} \left(-\frac{\mathbf{x}}{2}, -\frac{\tau}{2} \right) \right] \right| \pi^+(\mathbf{p}) \right\rangle$$

• Inverse FT of $V^{\mu\nu}$ calculable on lattice in terms of 2-point and 3-point functions

$$egin{aligned} \mathcal{C}_2(au) &= \langle \mathcal{O}_\pi(au) \mathcal{O}_\pi^\dagger(0)
angle \ \mathcal{C}_3(au_e, au_m) &= \langle A^\mu(au_e) A^
u(au_m) \mathcal{O}_\pi^\dagger(0)
angle \end{aligned}$$

Ensembles Used

Choice of Kinematics

$$V^{\mu\nu}(p,q) = \frac{2i\mathbf{f}_{\pi}\varepsilon^{\mu\nu\rho\sigma}q_{\rho}p_{\sigma}}{\tilde{Q}^{2}}\sum_{\substack{n=0\\\text{even}}}^{\infty} \frac{\tilde{\omega}^{n}}{2^{n}(n+1)}C_{W}^{(n)}(\tilde{Q},m_{\Psi},\mu)\langle\xi^{n}\rangle(\mu) + O\left(\frac{\Lambda_{\text{QCD}}}{\tilde{Q}}\right)$$

- Wilson coefficients $C_{\mathcal{W}}^{(n)}(\mu=2\text{ GeV})$ calculated to 1-loop
- Fit parameters: f_{π} , m_{Ψ} , $\langle \xi^2 \rangle$
- Contribution of second moment $\langle \xi^2 \rangle$ suppressed by

$$\frac{\tilde{\omega}^2}{2^2 \times 3} = \frac{1}{3} \left(\frac{p \cdot q}{\tilde{Q}^2} \right)^2 \lesssim 10^{-2}$$

Choice of Kinematics

$$\mathbf{p} = (1,0,0) = (0.64 \text{ GeV}, 0,0)$$

 $2\mathbf{q} = (1,0,2) = (0.64 \text{ GeV}, 0, 1.28 \text{ GeV})$

Fitting Hadronic Tensor

• Fit ratio of 2- and 3-point correlators to inverse FT of OPE

$$au_\pi=149\pm 1\,\,{
m MeV}$$
 $m_\Psi=1.85\pm 0.01\,\,{
m GeV}$

$$\langle \xi^2 \rangle = 0.209 \pm 0.011$$

Fits to Various Ensembles

Masses are (left to right) {1.8, 2.5, 3.3, 3.9, 4.6} GeV

Continuum Extrapolation

Extrapolate away both discretization errors and twist-3 effects

Uncertainty in Continuum Extrapolation

- Original fit restricted am_{Ψ} to < 1.05
- Could take a more conservative threshold, e.g. $am_{\Psi} < 0.7$

Uncertainty in Higher-Twist Effects

• Could add twist-4 term to fit as well

$$\mathsf{data} = \langle \xi^2 \rangle + \mathsf{A} m_{\Psi}^{-1} + \mathsf{B} m_{\Psi}^{-2} + \mathsf{C} \mathsf{a}^2 + \mathsf{D} \mathsf{a}^2 m_{\Psi} + \mathsf{E} \mathsf{a}^2 m_{\Psi}^2$$

Remaining Uncertainties

- Excited state contamination: estimated at 1%
- Finite volume effects: $m_{\pi}L = 5.4 \Rightarrow \frac{1}{m_{\pi}L}e^{-m_{\pi}L} = \mathbf{0.08}\%$
- Unphysical pion mass ($m_\pi=550$ MeV): Likely a $\sim 5\%$ error (V. M. Braun et al., hep-lat/1503.03656)
- ullet Fit range: Excluding au=3a as well gives discrepancy of 1%
- Wilson coefficients: Performing fit at $\mu=4$ GeV and running back to 2 GeV gives discrepancy of **4%**
- ullet Quenching: Formally uncontrolled, typically around $10\mbox{--}20\%$

Combined Uncertainty

$$\langle \xi^2 \rangle = 0.210 \pm 0.013 \text{ (statistical)} \\ \pm \textbf{0.016} \text{ (continuum)} \\ \pm \textbf{0.025} \text{ (higher twist)} \\ \pm 0.002 \text{ (excited states)} \\ \pm 0.0002 \text{ (finite volume)} \\ \pm 0.014 \text{ (unphysically heavy pion)} \\ \pm 0.002 \text{ (fit range)} \\ \pm 0.008 \text{ (running coupling)} \\ \hline \langle \xi^2 \rangle = 0.210 \pm 0.036 \text{ (total, exc. quenching)}$$

Comparison to Literature

