Pion and Kaon Distribution Amplitudes with LaMET

LaMET 2021 Online

2021/12/8

Jinchen He

(Lattice Parton Collaboration, LPC) Univ. of Maryland, College Park Shanghai Jiao Tong Univ. 1 Motivation

Contents

LaMET and high precision analysis

3 LCDAs on lattice in LaMET

4 Summary

Motivation

LCDAs: Inner structure of hadrons

- PDFs: describe the distribution of a single parton
- LCDAs: describe the distribution of all partons

$$\phi_{\pi}(x) = rac{1}{if_{\pi}} \int rac{d\lambda}{2\pi P^{+}} e^{-i\left(x-rac{1}{2}
ight)\lambda} \left\langle 0\left|O_{\gamma^{+}\gamma_{5}}(\lambda n)
ight|\pi(P)
ight
angle$$

LCDAs: essential input for exclusive processes

QCD factorization: separate the processes at different energy scales

Decay amplitudes of exclusive process

LCDAs: essential input for exclusive processes

Exclusive processes provide an ideal platform to search for new physics.

• **CKM** matrix elements

The breaking of the unitarity of CKM matrix will gives the indication of new physics.

Rare decays

Sensitive to the beyond-SM contribution.

Decay amplitudes of exclusive process

= <u>hard scattering kernels</u> \bigotimes <u>light-cone distribution amplitudes</u>

LCDAs: theoretical efforts

Four decades

1980

2021

Asymptotic LCDAs

A.V. Efremov et. al., Theor.Math.Phys.42 (1980)

Sum rules

V.L. Chernyak et. al., Nucl.Phys.B 201 (1982) Vladimir M. Braun et. al., Z.Phys.C 44 (1989) Patricia Ball et. al., JHEP 08 (2007)

Lattice calculation with OPE

G. Martinelli et. al., Phys.Lett.B 190 (1987) RQCD Collaboration, JHEP 11 (2020)

Quark model

Choi, Phys.Rev.D 75 (2007)

Dyson-Schwinger Equation

Fei Gao, Phys.Rev.D 90 (2014) Craig D.et.al., Prog.Part.Nucl.Phys. (2021)

Lattice calculation with LaMET

Zhang, et. al., Phys.Rev.D 95 (2017) R. Zhang et.al., Phys.Rev.D 102 (2020)

• ...

LaMET and high precision analysis

Large-Momentum Effective Theory(LaMET)

First principle calculations of entire LCDAs became feasible

X. Ji. Parton Physics on a Euclidean Lattice, Phys.Rev.Lett. 110, 262002

(2013).

Light-cone distribution:

Separated on the time axis;

Cannot be calculated on the

lattice

Quasi distribution:

Equal time;

Directly calculable on the

lattice

$$\left[ilde{\phi}_{\pi} \left(y, \overset{P^z}{P^z}, \mu_R, p_R^z
ight) = \int_0^1 dx C_{\pi} \left(y, x, r, rac{P^z}{\mu}, rac{P^z}{p_R^z}
ight) \phi_{\pi}(x, \mu) + \ldots$$

Lattice calculation of LCDAs with LaMET

J. H. Zhang, et. al., Phys.Rev.D 95 (2017)
Pion mass = 310 MeV; a = 0.12 fm
Wilson-line renormalization

R. Zhang et.al., Phys.Rev.D 102 (2020)
Pion mass = 310 MeV
RI/MOM renormalization

High precision study with LaMET

- 1 Physical pion/kaon mass
- 2 Self-renormalization
- **Extrapolation in the coordinate space**
- 4 Two loop matching... (for further study)

LCDAs on lattice in LaMET

Lattice Setup

- 2+1+1 flavors of HISQ action (MILC collaboration)
- 3 lattice spacings: 0.06fm, 0.09fm, 0.12fm
- Physical pion/kaon mass
- Momentum: 1.29GeV, 1.72GeV, 2.15GeV
- Gamma factor: 9.21, 12.29, 15.36

Ensemble	\ /	$L^3 \times T$	$c_{ m SW}$	$m_{u/d}$	$\overline{m_s}$
a06m130		$96^3 \times 192$	1.03493	-0.0439	-0.0191
a09m130	0.088	$64^{3} \times 96$	1.04239	-0.0580	-0.0174
a12m130	0.121	$48^{3} \times 64$	1.05088	-0.0785	-0.0191

Leading-twist LCDAs

The leading-twist LCDAs of a pseudoscalar meson:

$$egin{aligned} &\int rac{d\xi^-}{2\pi} e^{ixp^+\xi^-} \left\langle 0 \left| ar{\psi}_1(0)
ot\!\!/ \gamma_5 U\left(0, \xi^-
ight) \psi_2\left(\xi^-
ight)
ight| M(P)
ight
angle \ &= if_M(p\cdot n) \Phi_M(x) \ &\qquad \qquad U\left(0, \xi^-
ight) = P \exp \left[ig_s \int_{\xi_-}^0 ds n_+ \cdot A\left(s n_+
ight)
ight] \end{aligned}$$

LCDAs: $\Phi_\pi(x,\mu^2)$ x is the longitudinal momentum fraction

Lattice calculation

We simulate on the lattice the quasi-LF correlation:

The g.s. quasi-DA can be extracted:

Normalized g.s. Matrix element

$$rac{C_2^m(z,\!ec{P},\!t)}{C_2^m(z\!=\!0,\!ec{P},\!t)} = rac{H_m^b(z)(1\!+\!c_m(z)e^{-\Delta E t})}{(1\!+\!c_m(0)e^{-\Delta E t})}$$

Linear divergence

Irrelevant with the current

Linear divergence: comes from self-energy of Wilson link

Mass counterterm:
$$\delta m = -rac{lpha_s C_F}{2\pi}(\pi\Lambda), \Lambda = rac{1}{a}$$

Lattice spacing

J. Chen, et.al, Nucl. Phys. B915, 1 (2017)

Y. Huo, et al. Nucl. Phys. B (2021)

Self-renormalization: hybrid scheme

Self-renormalization: One fits the divergence structure to zero momentum hadron matrix element and uses it for renormalization.

Renormalization factor:

$$\ln(Z(z,a)_R) = \ln \mathcal{M}(z,a) - r(z)$$

Renormalized matrix element:

$$H_m^R(z) = rac{H_m^b(z)}{Z(z,a)_R \cdot Z_{\overline{ ext{MS}}}^{\gamma_z \gamma_5} \left(z,\mu,\Lambda_{\overline{ ext{MS}}}
ight)}$$

Self-renormalization: hybrid scheme

Bare Pion DA

Renormalized Pion DA

Inverse matching

Kernel
$$C\left(\lambda,\lambda',\mu\right)=\delta\left(\lambda-\lambda'\right)+C^{(1)}\left(\lambda,\lambda',\mu\right)+\mathcal{O}\left(lpha_s^2\right)$$

Inverse Matching $h(\lambda) \approx \tilde{h}(\lambda) - \int_0^{\lambda} d\lambda' \tilde{h}(\lambda') C^{(1)}$

Why we need to extrapolate in the coordinate space?

R. Zhang et.al., Phys.Rev.D 102 (2020)

Extrapolation in the coordinate space

LCDAs in momentum space

$$\Psi(x) \sim x^a (1-x)^b$$

FT to the coordinate space

$$h(\lambda) = \int_0^1 dx \ e^{-ix\lambda} x^a (1-x)^b$$

Extrapolation form

$$ilde{H}\left(z,P_{z}
ight)=\left\lceilrac{c_{1}}{\left(-i\lambda
ight)^{a}}+e^{i\lambda}rac{c_{2}}{\left(i\lambda
ight)^{b}}
ight
ceil$$

Extrapolate in the coordinate space

Extrapolate with different forms: the results of LCDAs are consistent.

Pion, Pz = 2.15 GeV, LCDAs in mom space

Polynomial form

$$ilde{H}\left(z,P_{z}
ight)=\left\lceil rac{c_{1}}{\left(-i\lambda
ight)^{a}}+e^{i\lambda}rac{c_{2}}{\left(i\lambda
ight)^{b}}
ight
ceil$$

Exponential form

$$ilde{H}\left(z,P_{z}
ight)=\left[rac{c_{1}}{\left(-i\lambda
ight)^{a}}+e^{i\lambda}rac{c_{2}}{\left(i\lambda
ight)^{b}}
ight]e^{-rac{\lambda}{\lambda_{0}}}$$

Final results of Pion LCDAs

Mellin moment $<\xi^2>$

- Renormalization method
- Extrapolation in the coordinate space

Final results of Kaon LCDAs

Summary

- LCDAs are essential inputs for exclusive processes
- We calculated LCDAs on lattice at physical mass with LaMET:
 - Hybrid scheme based on self renormalization is firstly adopted
 - Extrapolation in the coordinate space to avoid fluctuation in the momentum space
- For further study:
 - High order, Higher twist

Thanks for your attention!

O ...

Supplement

Pion LCDA in LaMET

Ground state fit Quasi-LF correlation Normalized g.s. Matrix element **Self-renormalization Continuum limit Inverse matching LCDA** in coordinate space **Renormalized quasi-DA** Extrapolation, FT Large momentum limit **MS-bar LCDA** LCDA at infty mom

Matching in the coordinate space v.s. matching in the momentum space

RI/MOM: residual linear divergence

RI/MOM cannot eliminate all linear divergence

χQCD Collaboration • Kuan Zhang et al. DOI: 10.1103/PhysRevD.104.074501

RI/MOM: residual linear divergences

After RI/MOM renormalization, there are residual linear divergences, which make the continuum extrapolation misleading or even problematic.

χQCD Collaboration • Kuan Zhang et al. DOI: 10.1103/PhysRevD.104.074501

RI/MOM renormalization: non-perturbative effects

Quark and hadron have different non-perturbative structure at large z

Yi-Kai Huo, Yushan Su et al. Nuclear Physics B (2021): 115443

$$\Psi\left(P_{z}
ight)=\Psi\left(P_{z}
ightarrow\infty
ight)+rac{c_{2}}{P_{z}^{2}}+O\left(rac{1}{P_{z}^{4}}
ight)$$

Large momentum limit: Why start from $\frac{1}{P_z^2}$

$$ilde{\Psi}' = C * \Psi = ilde{\Psi} + O(rac{1}{P_z^2})$$

$$C^{-1}* ilde{\Psi}=C^{-1}*(ilde{\Psi}'-O(rac{1}{P_z^2}))=\Psi-C^{-1}*O(rac{1}{P_z^2})$$

Strategy of q.s. Fit: two-state fit cannot extract e.s. successfully

Two-state fit

1.72GeV >> 0.14 GeV

$$rac{C_2^m(z, ec{P}, t)}{C_2^m(z=0, ec{P}, t)} = rac{H_m^b(z) igl(1 + c_m(z) e^{-\Delta E t}igr)}{(1 + c_m(0) e^{-\Delta E t})}$$

One-state fit

$$rac{C_2^m(z,\!ec{P},\!t)}{C_2^m(z=\!0,\!ec{P},\!t)} = H_m^b\!\left(z
ight)$$

```
z=4
Least Square Fit:
  chi2/dof [dof] = 0.083 [26]
                                            logGBF = 226.45
                                  Q = 1
Parameters:
                  3.5(1.0)e-06
                                        0.0 (1.0) ]
             c1
                      0.20 (34)
                                            0 (10) ]
                   1e-19 +- 10
                                            0 (10) ]
                    0.471 (30)
                                            0 (10) ]
           cr_1
                     0.28 (34)
                                         0.0 (5.0) ]
           ci 1
                     0.30 (33)
                                         0.0 (5.0) ]
        deltaE1
                                         0.0 (5.0) ]
                     0.27 (25)
        phi2_re
                   0.4366 (89)
                                            0 (10) ]
        phi2_im
                                            0 (10) ]
                    -0.843(17)
```

The fit results of coefficients of e.s. cover zero within error