Valence parton distribution of pion from lattice QCD at physical point

Xiang Gao
CCNU \& BNL

In Collaboration with N. Karthik, S. Mukherjee, P.
Petreczky, S. Syritsyn, A. Hanlon, P. Scior and Y. Zhao

LaMET 2021 Online, Dec 7 - 9, 2021

Pion valence quark PDF

Pion play a central role in the study of the strong interactions.

$$
m_{\pi} \approx 140 \mathrm{MeV} \xrightarrow[\mathrm{~m}_{\mathrm{q}}=0]{\text { chiral limit }} 0
$$

- Critical ingredient for understanding the dynamical chiral symmetry breaking in QCD.
- Quarks and gluons in massless NG bosons.
- ...

However, the absence of fixed pion targets has made it difficult to determine the pion's structure experimentally. One of the key physics issue is $x=1$ behavior:

$$
\lim _{x \rightarrow 1} f_{v}^{\pi}(x) \sim(1-x)^{\beta}
$$

Pion valence quark PDF

Equal-time correlators and qPDF factorization

$$
z+c t=0, \quad z-c t \neq 0
$$

$$
t=0, \quad z \neq 0
$$

Conventional PDF definition:

\[

\]

Equal-time correlators and qPDF factorization

$$
z+c t=0, \quad z-c t \neq 0
$$

$$
t=0
$$

$$
z \neq 0
$$

- X. Ji, PRL 110 (2013); SCPMA57 (2014);
- X. Ji, Y. Zhao, et al, arXiv:2004.03543

Equal-time correlators and SDF

Short distance Factorization in coordinate space:

- V. Braun et al., EPJC 55 (2008)

$$
t=0, \quad z \neq 0
$$

$\langle P| \tilde{O}_{\Gamma}(z, \epsilon)|P\rangle$
$\tilde{O}_{\Gamma}(z, \epsilon)=\bar{\psi}(0) \Gamma W_{\hat{z}}(0, z) \psi(z)$

- A. V. Radyushkin et al., PRD 96 (2017)
- Y. Ma et al., PRL 120 (2018)
- T. Izubuchi et al., PRD 98 (2018)

$$
\begin{aligned}
& \tilde{Q}\left(\zeta, z^{2} \mu^{2}\right)=\langle P| \tilde{O}_{\gamma^{\mu}}(z, \mu)|P\rangle /\left(2 P^{\mu}\right) \\
& =\int_{-1}^{1} d \alpha \mathscr{C}\left(\alpha, \mu^{2} z^{2}\right) Q(\alpha \zeta, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)
\end{aligned}
$$

Perturbative kernel

$$
Q(\zeta, \mu)=\int_{-1}^{1} d y e^{-i y \zeta} q(y, \mu)
$$

- The lattice data in coordinate space can be directly related to the F.T. of PDFs.
- The perturbative matching is valid in short range of z.
- The information that lattice data contains is limited by the range of finite $\zeta=z P_{z}$.

Small z and large P_{z} are essential

Equal-time correlators and SDF

Short distance Factorization in coordinate space:
loffe time $\zeta=z P_{z}$

$$
\begin{aligned}
& \tilde{Q}\left(\zeta, z^{2} \mu^{2}\right)=\langle P| \tilde{O}_{\gamma^{\prime}}(z, \mu)|P\rangle /\left(2 P^{\mu}\right) \\
& =\int_{-1}^{1} d \alpha \mathscr{C}\left(\alpha, \mu^{2} z^{2}\right) Q(\alpha \zeta, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)
\end{aligned}
$$

What we can get from finite $\zeta=z P_{z}$:

- Extracted $Q(\zeta, \mu)$ up to the largest $\zeta=z P_{z}$ achieved on lattice by solving the inverse problem above.
- Extract the moments of PDFs model independently.

$$
\begin{gathered}
\tilde{Q}\left(\zeta, z^{2} \mu^{2}\right)=\sum_{n} C_{n}\left(\mu^{2} z^{2}\right) \frac{(-i \zeta)^{n}}{n!} \int_{-1}^{1} d y y^{n} q(y, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right) \\
\text { Wilson coefficients Moments of PDF }
\end{gathered}
$$

- Reconstruct the PDFs using certain models.

Bare matrix elements and Renormalization

Bare matrix elements of boosted pion state

The operator can be multiplicatively renormalized

- X. Ji, J. H. Zhang and Y. Zhao, PRL120.112001
- J. Green, K. Jansen and F. Steffens, PRL.121.022004

$$
\begin{aligned}
& {\left[\bar{\psi}(0) \Gamma W_{\hat{z}}(0, z) \psi(z)\right]_{B}} \\
& =e^{-\delta m(a)|z|} Z(a)\left[\bar{\psi}(0) \Gamma W_{\hat{z}}(0, z) \psi(z)\right]_{R}
\end{aligned}
$$

$$
\delta m=m_{-1} / a+m_{0}
$$

- Ratio scheme renormalization
- A. V. Radyushkin et al., PRD 96 (2017)
- BNL, PRD 102 (2020)

$$
\begin{gathered}
h_{B}\left(z, P_{z}, a\right)=\left\langle P_{z}\right|\left[\bar{\psi}(0) \Gamma W_{\hat{z}}(0, z) \psi(z)\right]_{B}\left|P_{z}\right\rangle \\
\frac{h_{B}\left(z, P_{z}, a\right)}{h_{B}\left(z, P_{z}^{0}, a\right)}=\frac{\tilde{Q}\left(z, P_{z}, \mu\right)}{\tilde{Q}\left(z, P_{z}^{0}, \mu\right)} \\
=\frac{\sum_{n} C_{n}\left(\mu^{2} z^{2}\right) \frac{\left(-i z z_{2}\right)^{n}}{n!} \int_{-1}^{1} d y y^{n} q(y, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)}{\sum_{n} C_{n}\left(\mu^{2} z^{2}\right) \frac{\left(-i z P P_{2}\right)^{n}}{n!} \int_{-1}^{1} d y y^{n} q(y, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)}
\end{gathered}
$$

Pion valence quark PDF: $Q(\zeta, \mu)$

Ratio scheme renormalized matrix elements

- $Q(\zeta, \mu)$ can be reconstructed by solving the inverse problem above.
- DNN (Deep Neural Network) is probably the best tool achieve this in an unbiased fashion.
- Extract the loffe-time distribution (ITD) $Q(\zeta, \mu)$.

- $\operatorname{Lat}_{\mathrm{DNN}}$: DNN represented $Q(\zeta, \mu)$.
$\zeta=z P_{z}$
- Lat ${ }_{\text {Model }}$: PDF model $q(x)=A x^{\alpha}(1-x)^{\beta}$ reconstructed $Q(\zeta, \mu)$.

Pion valence quark PDF: NLO results

Moments of pion valence quark PDF

$\tilde{Q}\left(\zeta, z^{2} \mu^{2}\right)=\sum_{n} C_{n}\left(\mu^{2} z^{2}\right) \frac{(-i \zeta)^{n}}{n!} \int_{-1}^{1} d y y^{n} q(y, \mu)+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right)$

Pion valence quark PDF

Improvement:

- Matching formula beyond one-loop.
- Computation with physical pion mass.
- Extract PDFs information from chiral fermions.

Pion valence quark PDF: NNLO matching

Improvement:

- Matching formula beyond one-loop.
- Computation with physical pion mass.
- Extract PDFs information from chiral fermions.
- NNLO matching
- Li, Ma and Qiu, PRL 126 (2021)
$C_{n}\left(z^{2} \mu^{2}\right)=1+\alpha_{s}(\mu) C_{n}^{(1)}\left(z^{2} \mu^{2}\right)+\alpha_{s}^{2}(\mu) C_{n}^{(2)}\left(z^{2} \mu^{2}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)$
$=1+\frac{\alpha_{S}(\mu) C_{F}}{2 \pi}\left[\left(\frac{3+2 n}{2+3 n+n^{2}}+2 H_{n}\right) \ln \left(z_{0}^{2} \mu^{2}\right)+\ldots\right]+\ldots$

$$
z_{0}^{2}=z^{2} e^{2 \gamma_{E} / 4}
$$

When $\ln \left(z_{0}^{2} \mu^{2}\right)$ become large, one may need to include the DGLAP evolution:

$$
\left[\frac{\partial}{\partial \ln \mu^{2}}+\beta\left(\alpha_{s}(\mu)\right) \frac{\partial}{\partial \alpha_{s}}-\gamma_{n}\right] C_{n}^{e v o}=0
$$

- A. V. Radyushkin, PLB 781 (2018)
- BNL, ANL, arXiv: 2102.01101
- Clear z_{0} dependence can be observed at LO.
- Moments evolved from $1 / z_{0}$ to μ from NNLO are consistent with NLO with current statistics but more flat, and agree with the DGLAP improved case.

Pion valence quark PDF: Physical point

Improvement:

- Matching formula beyond one-loop.
- Computation with physical pion mass.
- Extract PDFs information from chiral fermions.
- Chiral fermion

Ratio scheme renormalized matrix elements

Pion valence quark PDF: Moments

Moments: NNLO matching, physical point, chiral fermion

- The mass dependence is mild for pion valence PDF.
- Chiral fermion shows good agreement with Wilson-Clover + HISQ fermion with fine lattice spacings.

Pion valence quark PDF: model reconstruction

We reconstruct the x-dependent pion valence PDF using model

$$
q_{v}(x)=x^{\alpha}(1-x)^{\beta}(1+t \sqrt{x}+s x)
$$

which shows good agreement with JAM18, xFitter as well as our previous determination using NLO matching. This reconstruction favors large-x behavior $\beta \sim 1$.

More improvement:

- Resummation in perturbative matching. For example, NLO+NLL threshold resummation (BNL, ANL PRD 103 (2021)).
- More statistics and large momentum P_{z} to extract higher moments.

Pion valence quark PDF: large-x behavior

Model independent estimate of large-x behavior $\boldsymbol{\beta}$

The moments $\left\langle x^{n}\right\rangle$ approach zero in the large-n limit in a manner dependent on β as:

- BNL, PRD 102, 074504 (2020)

$$
\left\langle x^{n}\right\rangle \propto n^{-\beta-1}(1+\mathcal{O}(1 / n))
$$

then one can determine β in a model independent way:

$$
\beta+1=-\frac{d \log \left(\left\langle\mathrm{x}^{\mathrm{n}}\right\rangle\right)}{d \log (\mathrm{n})}+\mathcal{O}(1 / n)
$$

A discretised form of the above expression that is suitable for a practical implementation:

$$
\beta_{\mathrm{eff}}(n) \equiv-1+\frac{\left\langle x^{n-2}\right\rangle-\left\langle x^{n+2}\right\rangle}{\left\langle x^{n}\right\rangle} \frac{n}{4}
$$

The $\beta_{\text {eff }}(n)$ computed from the model independent moments as well as the model dependent $\beta_{\mathrm{eff}}(n ; \alpha, \beta, t, s)$ are shown.

Current lattice data can't rule out $\beta \sim 1$ or 2 .

Summary

- We studied pion valence quark PDF by computing the equal-time correlators from lattice QCD.
- We applied the ratio scheme renormalization and coordinate-space factorization scheme with matching formula up to NNLO level.
- Our calculations used several pion mass including the physical one, we observed the mass dependence of the pion valence PDF is mild.
- Our current lattice data can't rule out any of the large-x behavior as $\beta \sim 1$ or $\beta \sim 2$, for which higher momentum are needed.

Pion valence quark PDF: Higher-twist effect

To estimate the higher-twist/non-perturbative effect as a function of z, one can define an effective $\delta m^{e f f}$

$$
\begin{aligned}
& -\delta m^{e f f}\left|z-z_{s}\right| \\
& =\ln \frac{h_{B}\left(z, P_{z}, a\right)}{h_{B}\left(z_{s}, P_{z}^{0}=0, a\right)}-\ln \frac{C_{0}\left(\mu^{2} z^{2}\right)-C_{2}\left(\mu^{2} z^{2}\right) \frac{\left(z P_{z}\right)^{2}}{2}\left\langle x^{2}\right\rangle_{z_{s}}}{C_{0}\left(\mu^{2} z_{s}^{2}\right)} \\
& =-\delta m\left|z-z_{s}\right|+\mathcal{O}\left(z^{2} \Lambda_{Q C D}^{2}\right) \quad \begin{array}{l}
z_{s} \text { is a fixed small distance } \\
\text { to cancel } \mathrm{Z}(\mathrm{a}) .
\end{array}
\end{aligned}
$$

- Subtract the twist-2 contribution from the matrix elements.
- Matrix elements of non-zero P_{z} contains information of the moments of the PDFs.
- Limit $z P_{z}<1$ where the data is only sensitive to the 2nd moment $\left\langle x^{2}\right\rangle$, which can be extracted at small z.

- $\delta m^{e f f}$ doesn't show a plateau, suggesting the higher-twist/non-perturbative effects as a function of z.
- Two different momentum produce consistent results at least up to 0.6 fm , where we can still apply the short distance factorization based on ratio scheme renormalization.

