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TMD evolution
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Uncertainty in nonperturbative contributions to TMDPDF evolution
limits QCD theory predictions to much lower precision
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The Collins-Soper kernel

TMDPDFs depend on UV renormalization scale [ as well as a scale (
associated with the renormalization of rapidity divergences
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CS kernel phenomenology

Fits to SIDIS and Drell-Yan datasets with multiple energy scales are
sensitive to evolution effects and therefore the CS kernel

CS kernel can be extracted along with TMDPDF in global fit
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Light-cone structure and LQCD

Lattice QCD provides a UV regularized definition and means of
numerically calculating Euclidean QCD path integrals

Euclidean matrix elements containing hard scales can be factorized into
perturbative coefficients and structure functions

Large momentum effective theory review: Ji et al, arXiv:2004.03543

For colinear PDFs and some aspects of TMDPDFs, Euclidean and light-
cone structure functions are related by Lorentz invariance

Diagrams:
Ebert, Stewart, Zhao, JHEP 1909 (2019)




The CS kernel from LQCD

TMDPDF soft factor not related in Euclidean and Minkowski spacetime by
boosting, more complicated to determine from LQCD

Recent progress: Ji, Liu, and Liu, Nucl Phys B 955 (2020)
Zhang et al [LPC], PRL 125 (2020)

Ratios of TMDPDFs free from soft factors and can be calculated with LQCD

Musch et al, PRD 85 (2012) Engelhardt et al, PRD 93 (2016) Yoon et al, PRD 96 (2017)

See talk by Yizhuang Liu

CS kernel determination using quasi-TMDPDFs suggested

Ji, Sun, Xiong, Yuan PRD 91 (2015)

Method concretely relating CS kernel to quasi TMDPDF ratios
proposed and derived

Ebert, Stewart, Zhao, PRD 99 (2019) , :
Euclidean quasi-
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Quenched results

CS kernel's independence from external state used to enable efficient
calculations in quenched QCD

Valence pion mass m, = 1.2 GeV

Label B a[fm] L3 XT K  Tare ot P? e {1.3, 1.9, 2.6} GeV
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Quenched challenges

Fourier transform truncation effects: challenging systematic uncertainties to quantify
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Dynamical LQCD

setup

Mixed action: Ny =2+ 1+ 1 MILC ensembles with ~physical quark masses

a=0.12 fm L =48a = 5.6 fm

Bazavov et al [MILC] PRD 87 (2013)

Wilson valence quarks with tree-level clover improvement,
Wilson flow ¢ — 1.0 used as smearing in valence action

m, = 538(1) MeV
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Renormalization and mixing

Nonlocal quark bilinear operators with OL(b*,n) = G(bM)EWQ(bM; n — b%)

stapled shaped Wilson lines 2
renormalized using high-momentum tooa ton
quark vertex function (RI/MOM scheme) X W (nz; br)W; (0;1)q(0)

PRELIEESN
NLO (one-loop) matching used to convert
to MS scheme: Ebert, Stewart, Zhao, JHEP 099 (2020) ]
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RI/MOM renormalization
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Including mixing between
operators with different Dirac
structures (16 x 16 matrix)
leads to < 5% corrections to
renormalized matrix elements
that depend on staple
geometry

Shanahan, MW, Zhao, PRD 104 (2021)
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Trouble with RI/MOM
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Asymmetry visible in beam functions after RI/MOM renormalization

1.o[

0.10}
— 0.0
Emc‘“* i
/A 0.00]
Q :
S _0.05
-0.10
0.5
2~
.
Sa 0.0
(D)}
ae
-0.5
-1.0

T

T T T T

br = 0.24 fm

RI/MOM

o 10

T T T T T T T T T T T T

T T T T T T T T

1.0f '
br = 0.24 fm
0.5+
ER :
e I
Q 0.0
s
e
-0.5
O p2=3 O n*=5 A n*=7
—1.0_Jlll R N B S B S S S B
—~10 -5 0 5) 10

12



Beam function asymmetry
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Asymmetry visible after RI/MOM

renormalization could arise from state-  — 5 #f=02tmm =163 s
; . <
dependence of static quark potential : 01 _a i
m(" ™ i |
~ o
N2 mr
| Oz
~— 87
E‘% S
Lr
. r O p7=3 n°=3 n =7
State dependence of static quark potential | o S N
visible in previous calculations 0.0 0.5 1.0 1.5
b* [fm]
0.10 I Correction for difference in static quark
bR =0.24 fm, n = 1.68 fm - pOtent|a|S app“ed
005 ] Tra. R vt
; B%S,corr(bz’ bT) _ 6A(bT)|b |B%S(bz, bT)
< 0.00r ; :
> Roughly linear trend in 7 observed
-0.05
O p2=3 n*=>5 n®=7 &
010 - - ] A(br) =V (b — V(b1 )pion ~ 0 b
0.1 0.2 0.3 0.4 0.5 ( T) ( T)quark ( T)plon T
by [fm]

13



|

AS;corr

4

Bl\
~

Re |

Asymmetry correction

After correcting for state dependence of static quark potential, expected
(anti)symmetrization of beam function emerges
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Inverse problems

Inverse problem:
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br = 0.24 fm

Fourier transforming data from a finite

o £ interval is a formally ill-posed problem
ds | . | 1 LQCD results span a finite range of
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Inverse problem is (not) severe in practice if LQCD results are (not) truncated to
values of b - P where the Fourier transform integrand is non-negligible

Any method to fit function of X given data with limited b - P is an attempt to
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CS kernel systematics
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Large-distance extrapolation

Fits performed independently for each b1, P~ to analytic model in order to
extrapolate to larger p>
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Untruncated Fourier transformations performed analytically after fitting

Improvement from quenched calculation: modeling in coordinate space instead
of momentum space permits & dependent extraction of CS kernel and
NLO quasi/light-cone matching



CS kernel systematics
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CS kernel results

Plateau regions of I -dependent CS kernel used to give final results and
(bootstrap confidence interval) uncertainties
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Comparing approximations

NLO matching leads to significant effects on CS kernel determination
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LO results using ratios of b* = 0 beam functions or the momentum-space
models used in quenched calculation are consistent with LO results using
average over r dependence but give smaller uncertainty estimates
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Lattice comparison

Results are broadly consistent with other LQCD calculations (different actions
and systematics)
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Differences with previous LO calculations (SWZ 20, LPC 20, ETMC / PKU 21)
consistent with differences between Fourier transform schemes



Phenomenological comparison

Results can be compared with phenomenology

Warning - no continuum extrapolation,
unquantified systematics remain
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Lattice artifacts at small bT ? Underestimated Fourier transform systematics?
Further studies needed! -



Outlook

Nonperturbative QCD input is required to determine the Collins-Soper
kernel governing TMDPDF evolution and improve precision of
SIDIS and Drell-Yan predictions / TMDPDF extractions

Recent LQCD results by

several groups 007

demonstrate increasing &
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N
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kernel calculations =
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Studies of lattice spacing dependence and other schemes such as hybrid

renormalization also needed



