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In this Lecture
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▶ Generative Adversarial Networks

– algorithm statement;

– ideal case;

– shortcomings of vanilla algorithm;

– proposed shortcuts.



›

Idea



Reminder: 𝑓-divergence
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▶ For convex 𝑓(. ), 𝑃 and 𝑄 some distributions, we define 𝑓-divergence:

𝐷𝑓(𝑃| 𝑄 = 𝑞 𝑥 𝑓
𝑝 𝑥

𝑞 𝑥
𝑑𝑥.



Reminder: 𝑓-divergence
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▶ For convex 𝑓(. ), 𝑃 and 𝑄 some distributions, we define 𝑓-divergence:

𝐷𝑓(𝑃| 𝑄 = 𝑞 𝑥 𝑓
𝑝 𝑥

𝑞 𝑥
𝑑𝑥.



Reminder: 𝑓-divergence Convergence
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▶ For convex 𝑓(. ), 𝑃 and 𝑄 some distributions, we define 𝑓-divergence:

𝐷𝑓(𝑃| 𝑄 = 𝑞 𝑥 𝑓
𝑝 𝑥

𝑞 𝑥
𝑑𝑥.

To optimize 𝑟𝐾𝐿 properly we need access to true PDF, p(x). 



Reminder: Variational Lower Bound
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▶ For convex 𝑓(. ), 𝑃 and 𝑄 some distributions, we define 𝑓-divergence:

▶ Lower bound can be written:

𝐷𝑓(𝑃| 𝑄 ≥ max
𝑇 𝑥

𝔼𝑥~𝑃𝑇 𝑥 − 𝔼𝑥~𝑄𝑓
∗ 𝑇 𝑥 ,

𝑇 𝑥 is some random function.

▶ The tight boundary can be estimated for each 𝑓-divergence (𝑇∗(𝑥)).

▶ For JS-divergence 𝑇∗ 𝑥 = log
2𝑝 𝑥

𝑝 𝑥 +𝑞 𝑥
, 𝑓∗ 𝑥 = − log 2 − exp 𝑡 .

𝐷𝑓(𝑃| 𝑄 = 𝑞 𝑥 𝑓
𝑝 𝑥

𝑞 𝑥
𝑑𝑥.



P(x)

x

Q(x)

x
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Lower Bound for JS

JS(𝑃| 𝑄 ≥ 𝔼𝑥~𝑃 log
2𝑝 𝑥

𝑝 𝑥 + 𝑞 𝑥
𝔼𝑥~𝑄 log

2𝑞 𝑥

𝑝 𝑥 + 𝑞 𝑥
+

It would be interesting to construct something close.



›

Adversarial optimization
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Rationale

▶ Need to optimize the model 𝑞𝜃 without the direct access to the 𝑝 𝑥 .

▶ Instead of minimizing over some analytically defined divergence with 

parameter 𝜙, one could minimize over ”learned divergence”.
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Generator

▶ 𝐺𝜃 is a generator. It should sample from a random noise:

𝑧𝑗 ∼ 𝑁 0; 1 ;

𝑥𝑗 = G𝜃 𝑧𝑗 .

▶ Our aim is 𝐺𝜃 as a neural network.

▶ We thus have a sample: 

𝑥𝑗 ~𝑞𝜃 𝑥

▶ 𝐺𝜃 can be defined in many ways. For example, physics generator.

Borisyak M et al. Adaptive divergence for rapid adversarial 

optimization. PeerJ Computer Science 6:e274 (2020)

https://peerj.com/articles/cs-274/
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Discriminator

▶ Add a classifying neural network, discriminator 𝑫𝝓, to distinguish 

between the real and generated samples.

▶ Optimize:

Real samples Generated samples



November 2021D.. Derkach  Generative Modeling 13

G+D recap
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Training at a Glance

For D and G defined as neural networks, we can use backpropagation.
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Optimal Solution

𝐶 𝐺 = max
𝐷

𝑉 𝐺,𝐷 =

= 𝔼𝑥~𝑃 log
𝑝 𝑥

𝑝 𝑥 + 𝑞 𝑥
+𝔼𝑥~𝑞𝜃(𝑥) log

𝑞 𝑥

𝑝 𝑥 + 𝑞 𝑥

= 𝔼𝑥~𝑝(𝑥) log(𝐷𝜙
∗ 𝑥 ) + 𝔼𝑥~𝑞𝜃(𝑥) log(1 − log(𝐷𝜙

∗ 𝑥 ) =
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Lower Bound Reminder

JS(𝑃| 𝑄 ≥ 𝔼𝑥~𝑝(𝑥) log
2𝑝 𝑥

𝑝 𝑥 +𝑞 𝑥
+ 𝔼𝑥~𝑞(𝑥) log

2𝑞 𝑥

𝑝 𝑥 +𝑞 𝑥

𝐶 𝐺 = 𝔼𝑥~𝑃 log
𝑝 𝑥

𝑝 𝑥 + 𝑞 𝑥
+ 𝔼𝑥~𝑄 log

𝑞 𝑥

𝑝 𝑥 + 𝑞 𝑥

▶ In case of ideal discriminator:

▶ This can be compared to variational bound:

▶ Difference is only in log 4
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Optimal Solution
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GAN algorithm
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GAN results

I. Goodfellow,et al. Generative Adversarial Networks, NIPS 2014

https://arxiv.org/abs/1406.2661
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GAN First Paper Disclaimer

I. Goodfellow, Generative Adversarial Networks, NIPS 2014

While we make no claim that these samples are better than 

samples generated by existing methods, we believe that these 

samples are at least competitive with the better generative 

models in the literature and highlight the potential of the 

adversarial framework.

https://arxiv.org/abs/1406.2661


›

GAN problems
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Game Approach Problems 

Martin Arjovsky, Towards Principled Methods for Training Generative Adversarial Networks , ICLR17

https://arxiv.org/abs/1701.04862


Mode Collapse
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Luke Metz et al Unrolled Generative Adversarial Networks ICLR 2017

▶ GANs choose to generate a small 
number of modes due to a defect in 
the training procedure, rather than 
due to the divergence they aim to 
minimize.

I. Goodfellow NIPS 2016 Tutorial: Generative 

Adversarial Network

https://arxiv.org/abs/1611.02163
https://arxiv.org/pdf/1701.00160.pdf


Mode Collapse
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▶ For fixed D:

– 𝐺 tends to converge to a point 
𝑥∗ that fools 𝐷 the most.

– In extreme cases, 𝐺 becomes 
independent on 𝑧.

– Gradient on 𝑧 diminishes.

▶ When D restarts:

– Easily finds this x∗.

– Pushes G to the next point 𝑥∗∗.

T. Che Mode Regularized Generative Adversarial Networks ICLR 2017

https://arxiv.org/abs/1612.02136


Vanishing Gradients

▶ For disjoint support of real and 
generated data

▶ An ideal discriminator can 
perfectly tell the real and generated 
data apart: 

𝐷 𝐺(𝑧) ≈ 0
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Vanishing Gradients

▶ 𝐿G = − log𝐷(𝐺 𝑧 )

▶ ൗ𝑑𝐷(𝑥)
𝑑𝑥 ≈ 0 for generated 𝑥

▶ ൗ𝑑𝐿G(𝑥)
𝑑𝑥 ≈ 0 for generated 𝑥

▶Generator can’t train!

▶Need to start closer (how?)

▶ Problem is further enhanced 
due to noisy estimate from 
data.
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Summary so Far

▶ Pros:

– Can utilize power of back-prop.  

– No explicit intractable integral. 

– No MCMC needed. 

▶ Cons: 

– Unclear stopping criteria.

– No explicit representation of 𝑔𝜃(𝑥) .

– Hard to train.

– No evaluation metric so hard to compare with other models.

– Easy to get trapped in local optima that memorize training data.

– Hard to invert generative model to get back latent 𝑧 from generated 𝑥.



›

GAN ways out
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Diminishing Gradients

▶ We have seen already that signal data is located on manifold. 

▶ GAN case is in fact more complicated, as we need a discriminator that 

distinguishes two supports. 

▶ This is way too easy, if supports are disjoint.
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Diminishing Gradients: Noisy Supports

▶ Let’s make the problem harder: introduce random noise 𝜀 ∼ 𝑁(0; 𝜎2𝐼): 

ℙ𝑥+𝜀(𝑥) = 𝔼𝑦∼𝑃(𝑥)ℙ𝜀(𝑥 − 𝑦).

▶ This will make noisy supports, that makes it difficult for discriminator. 

Martin Arjovsky, Towards Principled Methods for Training Generative Adversarial Networks , ICLR17

https://arxiv.org/abs/1701.04862
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Feature Matching 

Danger of overtrain to match known tests!
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Historical averaging 

Salimans et al. Improved Techniques for Training GANs, NIPS16 

https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
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Look into the Future: unrolled GANs



November 2021D.. Derkach  Generative Modeling 34

Unrolled GAN: results 

Luke Metz et al Unrolled Generative Adversarial Networks ICLR 2017

https://arxiv.org/abs/1611.02163


▶ use Generator-Discriminator game to estimate the distance from generated 

distribution to the true one. 

▶ produce sharp images. 

▶ reconstruct implicit model of target PDF.
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Conclusions: GANs



›

Wasserstein Distance



▶ Distributions 𝑃 𝑥 and 

𝑄 𝑥 are viewed as 

describing the amounts 

of “dirt” at point 𝒙

▶ We want to convert one 

distribution into the other 

by moving around some 

amounts of dirt

Wasserstein distance
Also called “Earth mover’s distance” (EMD)

▶The cost of moving an amount 𝒎 from 𝒙𝟏 to 𝒙𝟐 is 𝒎× 𝒙𝟐 − 𝒙𝟏

▶EMD(𝑃, 𝑄) = minimum total cost of converting 𝑃 into 𝑄
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▶ Say, we have a moving plan 𝛾 𝑥1, 𝑥2 ≥ 0:

Idea of definition

𝛾 𝑥1, 𝑥2 𝑑𝑥1𝑑𝑥2 – how much dirt we’re moving from 

[𝑥1, 𝑥1 + 𝑑𝑥1] to [𝑥2, 𝑥2 + 𝑑𝑥2]

▶Since we want to convert 𝑃 to 𝑄, the plan has to satisfy:

න
𝑥1

𝛾 𝑥1, 𝑥2 𝑑𝑥1 = 𝑄 𝑥2 , න
𝑥2

𝛾 𝑥1, 𝑥2 𝑑𝑥2 = 𝑃 𝑥1

▶Then, the cost of moving from [𝑥1, 𝑥1 + 𝑑𝑥1] to [𝑥2, 𝑥2 + 𝑑𝑥2] is:

𝑥2 − 𝑥1 ⋅ 𝛾 𝑥1, 𝑥2 𝑑𝑥1𝑑𝑥2

▶and the total cost is:

𝐶 = න
𝑥1,𝑥2

𝑥2 − 𝑥1 ⋅ 𝛾 𝑥1, 𝑥2 𝑑𝑥1𝑑𝑥2 = 𝔼𝑥1,𝑥2∼𝛾 𝑥1,𝑥2 𝑥2 − 𝑥1
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▶ Let 𝜋 be the set of all plans that convert 𝑃 to 𝑄, i.e.:

Idea of Definition

𝜋 = 𝛾: 𝛾 ≥ 0, න
𝑥1

𝛾 𝑥1, 𝑥2 𝑑𝑥1 = 𝑄 𝑥2 , න
𝑥2

𝛾 𝑥1, 𝑥2 𝑑𝑥2 = 𝑃 𝑥1

▶Then, the Wasserstein distance between 𝑃 and 𝑄 is:

EMD 𝑃, 𝑄 = inf
𝛾∈𝜋

𝔼𝑥1,𝑥2∼𝛾 𝑥2 − 𝑥1

Optimization over all transport plans – not too friendly
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Wasserstein Distance
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𝑊1distance

November 2021D.. Derkach  Generative Modeling 41

W
ik

im
e
d

ia



Convergence Example

TV:

KL:

JS:

W:

0

0

0

0

1

∞

log 2

𝑑0

1

∞

log 2

𝑑50
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Mass Attention

𝑊 takes into account the distance 
at which the differences in the 
distributions are located. 

This is exactly what we need to 
take into account multiple 
solutions! 
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𝑊 properties hints

𝑃 – true PDF, 𝑄 – fitted PDF.

▶ For a sequence of distributions 𝑄𝑛:

𝐾𝐿(𝑃| 𝑄𝑛 → 0→ 𝐽𝑆(𝑃; 𝑄𝑛) → 0→𝑊 𝑃;𝑄𝑛 → 0, 𝑄𝑛→
D
𝑃

▶ For 𝑄𝜃 ∼ 𝑔𝜃 𝑧 , 𝑔𝜃(𝑧) continuos 

𝑊 𝑄𝜃; 𝑄 is continuous and can be restricted to differentiable almost 

everywhere. 

Should we use directly in GAN? 
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▶ 𝑓 is Lipschitz-k continuous if

▶ there exists a constant 𝑘 ≥ 0, such 

that for all 𝑥1 and 𝑥2:

Lipschitz continuity

𝑓 𝑥1 − 𝑓 𝑥2 ≤ k ⋅ 𝑥1 − 𝑥2

img from https://en.wikipedia.org/wiki/Lipschitz_continuity
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https://en.wikipedia.org/wiki/Lipschitz_continuity


Kantorovich-Rubinstein Duality 

𝑃 – true PDF, 𝑄 – fitted PDF.

𝑊(𝑃; 𝑄) = sup
𝑓∈𝐿𝑖𝑝1

𝔼𝑥∼𝑃 𝑓 𝑥 − 𝔼𝑥∼𝑄𝑓(𝑥) ,

where 𝐿𝑖𝑝1 is 1-Lipshitz condition.
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𝑝 𝑥 , 𝑞(𝑥) – PDF.

𝛾ℱ 𝑃, 𝑄 = sup න𝑓 𝑑𝑝 𝑥 −න𝑓 𝑑𝑞 𝑥 : 𝑓 ∈ ℱ

ℱ is a class of real-valued bounded measurable functions on 𝑆.

For ℱ = 𝑓: 𝑓 |𝐿 ≤ 1 }, with 1-Lipschitz condition:

𝑊1is IPM but not 𝒇-divergence

Integral Probability Metrics

B. Sriperumbudur et al. On the empirical estimation of integral probability metrics

S. Nowozin, NIPS2016 workshop talk
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https://projecteuclid.org/download/pdfview_1/euclid.ejs/1347974672
https://www.youtube.com/watch?v=kQ1eEXgGsCU


Conclusions 
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▶ Wasserstein-1 is a distance with desired properties.

▶ Kantorovich-Rubinstein duality connects Wasserstein-1 distance to IPM.

▶ Lipschitzeness is needed for above to work.

▶ Wasserstein-1 distance cannot directly be inserted into 𝑓-GAN style*.

*J. Song et al., Bridging the Gap Between f-GANs and Wasserstein GANs, ICML 2020

https://arxiv.org/abs/1910.09779


›

Wasserstein GAN
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Lipschitz-1 Condition and Neural Networks

𝑊(𝑃;𝑄) = sup
𝑓∈𝐿𝑖𝑝1

𝔼𝑥∼𝑃 𝑓 𝑥 − 𝔼𝑥∼𝑄𝑓(𝑥) ,



▶ 𝑓 is a neural net – discriminator (‘critic’ in the original paper).

▶ The expectations is estimated from samples.

▶ Lipschitz-1 continuity can be replaced with Lipschitz-k continuity

– estimate 𝑘 ×W(𝑃, 𝑄)

– achieved by clipping the weights of the critic: 𝑤 → clip(𝑤,−𝑐, 𝑐) with some constant 𝑐.

Lipschitz-1 Condition and Neural Networks

M. Arjovsky et al. Wasserstein GAN

𝑊(𝑃;𝑄) = sup
𝑓∈𝐿𝑖𝑝1

𝔼𝑥∼𝑃 𝑓 𝑥 − 𝔼𝑥∼𝑄𝑓(𝑥) ,
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https://arxiv.org/abs/1701.07875


WGAN
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WGAN: problems solved 

https://arxiv.org/abs/1701.07875
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▶ the vanishing gradient 

problem is solved; 

▶ mode collapse problem is 

addressed;

▶ rom authors: Weight 

clipping is a clearly terrible 

way to enforce a Lipschitz 

constraint. :

https://arxiv.org/abs/1701.07875


WGAN: results
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▶ Weight clipping makes the critic less 

expressive and the training harder to 

converge

▶ Optimal 𝑓 should satisfy ∇𝑓 = 1

almost everywhere under 𝑃 and 𝑄

▶ Also: 𝑓 𝐿 ≤ 1 ⟺ ∇𝑓 ≤ 1

▶ Can replace weight clipping with a 

gradient penalty term:

WGAN-GP

GP = 𝜆නmax ∇ 𝑥𝑓 𝑥 − 1 2 𝑑𝑥 ℙ 𝑥 ∶

𝑥 = 𝛼𝑥1 + 1 − 𝛼 𝑥2
𝛼 ∼ Uniform 0, 1

𝑥1 ∼ 𝑃
𝑥2 ∼ 𝑄

Ishaan GulrajaniImproved Training of Wasserstein GANs
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GP = 𝜆𝔼 𝑥∼ℙ𝑥
∇ 𝑥𝑓 𝑥 − 1 2

Largest gradient constrained here

https://arxiv.org/abs/1704.00028


▶ Weight clipping makes the critic less 

expressive and the training harder to 

converge

▶ Optimal 𝑓 should satisfy ∇𝑓 = 1

almost everywhere under 𝑃 and 𝑄

▶ Also: 𝑓 𝐿 ≤ 1 ⟺ ∇𝑓 ≤ 1

▶ Can replace weight clipping with a 

gradient penalty term:

WGAN-GP

GP = 𝜆𝔼 𝑥∼ℙ𝑥
∇ 𝑥𝑓 𝑥 − 1 2 ℙ 𝑥 ∶

𝑥 = 𝛼𝑥1 + 1 − 𝛼 𝑥2
𝛼 ∼ Uniform 0, 1

𝑥1 ∼ 𝑃
𝑥2 ∼ 𝑄

GP = 𝜆𝔼 𝑥∼ℙ𝑥
max 0, ∇ 𝑥𝑓 𝑥 − 1 2

or alternatively (‘one-sided’ penalty):

Ishaan GulrajaniImproved Training of Wasserstein GANs
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https://arxiv.org/abs/1704.00028


WGAN: spectral normalization

Miyato et al. Spectral Normalization for Generative Adversarial Networks, ICLR 2018

November 2021D.. Derkach  Generative Modeling 57

https://arxiv.org/abs/1802.05957


WGAN: problems 
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M. Bellemare et al. The Cramer Distance as a Solution to Biased Wasserstein Gradients

https://arxiv.org/abs/1705.10743


Conclusions
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▶ WGAN is a power generative model. 

▶ Simpler training procedure but need to control Lipschitz continuity 

▶ Several ideas how do this. 

▶ Still problems:

– Kantorovich-Rubinstein duality only mimicked; 

– gradient is stuck near solutions.


