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In this Lecture

»| Generative Adversarial Networks

— algorithm statement;
— ideal case;
— shortcomings of vanilla algorithm;

— proposed shortcuts.
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Reminder: f-divergence

*] For convex f(.), P and Q some distributions, we define f-divergence:

Dr(PIIQ) = [ q()f (22) dx.

q(x)
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Reminder: f-divergence

*] For convex f(.), P and Q some distributions, we define f-divergence:

Dr(PIIQ) = [ q(0)f (B2) dx.

q(x)

KL= [p(X)logZ PE) g rKL = [ q(z)log %(2) 7.,

p(z)

ga(x)
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Reminder: f-divergence Convergence

*] For convex f(.), P and Q some distributions, we define f-divergence:

Dr(PIIQ) = [ q()f (22) dx.

q(x)

9(2) g,

rKL = [ q(z)log

p(z)

0* = aramin K L(a5(v)] [p())

— argrgnax(—E;qug log qg(x)]+E;’ﬁ~qQ log p()])

D. Derkach Generative Modelng  TO optimize rK L properly we need access to true PDF, p(x).



Reminder: Variational Lower Bound

For convex f(.), P and Q some distributions, we define f-divergence:

Dr(PIIQ) = [ q(0)f (B2) dx.

q(x)

Lower bound can be written:

D (PIlQ) = max Ey.pT (%) — Ey-of (T(x)),

T(x) is some random function.

>

The tight boundary can be estimated for each f-divergence (T (x)).

2p(x)
p(x)+q(x)’

For JS-divergence T*(x) = log f*(x) = —log(2 — exp(t)).
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Lower Bound for JS

o) = 5 (KLG@IEEEED 4 KLy (o)] 2252 )

PO Q(x)

JS(PIQ) = E,.plog t Ex-gl

It would be interesting to construct something close.
D. Derkach November 2021 8



Adversarial optimization



Rationale

»| Need to optimize the model gg without the direct access to the p(x).

0* = arg;niﬂ qu?}i ﬂmmp]imqf} V(fcb (ﬂ.’:), fé(i))

*] Instead of minimizing over some analytically defined divergence with

parameter ¢, one could minimize over “learned divergence”.
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Generator

*| Gg is a generator. It should sample from a random noise:
Zj ~ N(O, 1),

x; = Gg(z).

»| Our aim is Gg as a neural network.

*| We thus have a sample:
{xi}~qq(x)

»] Gg can be defined in many ways. For example, physics generator.

Borisyak M et al. Adaptive divergence for rapid adversarial

optimization. PeerJ Computer Science 6:e274 (2020)
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https://peerj.com/articles/cs-274/

Discriminator

»| Add a classifying neural network, discriminator Dy, to distinguish

between the real and generated samples.

*| Optimize:

max (Ey (o) (108(Dy(z)) + Egrgy(a) (1 — log(Dy(7)))

) \

Real samples Generated samples

D.. Derkach Generative Modeling November 2021
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G+D recap

We can now put together generator and discriminator.

» objective of discriminator:

I'[lq?:.?{ (E:rmp{.tr) (]Gg(Dqﬁ(:r)) + Ezwﬂ{ﬂ;l)(l - 1Dg(Dqﬁ(Gﬂ(z))) '

» objective of generator:

mélﬂ Kz n01)(1 —log(Dy(Go(2))

We thus defined a minimax game:

mgﬂ max EinpingV(fo(x), f6(Z)).

In exactly the way we wanted.

D.. Derkach Generative Modeling November 2021
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Training at a Glance

™m

Vo >, o) +1ee 1 -2 (25 )}

M Discriminator ]—> D —>» cost fF--=-=-=--- |

!

z~ N(o 1) J_ E
Generator l

N . - 1
fos UL ‘ _ voy%z:log (1-p(c(29))) or VGQ%Z log (D (G (2))) E

Real image @

For D and G defined as neural networks, we can use backpropagation.
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Optimal Solution

» For a given generator, the optimal discriminator is:
p(z)
p(z) + go()
» Incorporating that into the minimax game to yield virtual training
criterion:

Dy(G) =

C(G) = max V(G,D) =
= Exp(o) 108(Dg (X)) + Exqy () log(1 — log(Dg (x)) =

p(x) a()
() 1 G0 T Ermas 108 E T s

= Ey-p log

D.. Derkach Generative Modeling November 2021
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Lower Bound Reminder

»] In case of ideal discriminator:

p(x) q(x)
8200 + a0 T e 8Ly )

C(G) — IEX~P 10

*| This can be compared to variational bound:

2p(x) 29(x)
ISPIQ) = Bxpe 1087007 155 F Exeae 108565 1 65

*| Difference is only in log 4

D.. Derkach Generative Modeling November 2021
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Optimal Solution

» In an optimal case p = qg, we have C(G) = — log(4).
» We thus can write out:

p(z) + gp(x)

1
C(G) = —log(4) + S K L(p(x)| | 5= 1) +
1 T)+ gplT
2 KL (gy(@)) 222 02Dy
» In other words, we effectively optimize Jensen-Shannon

divergence:

C(G) = —log(4) + JS(p(z)]|ge(x))-

> Reminder: we did it without access to p(z).
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GAN algorithm

1. Sample data mini-batch (z1, .., T, ~ D).
2. Sample generator mini-batch (z1, .., 2z, ~ gg).

3. Use SGD to obtain new weights of generator:
Tr
1
VoV (Gg, Dy) = - Z;mg{l — Dy(Gy(2i))).
1=

4, Use SGD to obtain new weights of discriminator:

T

1

VeV(Ge, Dy) = — Z (log Dy(z:) + log(1 — Dy(Gy(2:)))) -

i=1
5. Repeat with several epochs.

D.. Derkach Generative Modeling November 2021
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GAN results

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c¢) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

l. Goodfellow,et al. Generative Adversarial Networks, NIPS 2014
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https://arxiv.org/abs/1406.2661

GAN First Paper Disclaimer

While we make no claim that these samples are better than
samples generated by existing methods, we believe that these
samples are at least competitive with the better generative

models in the literature and highlight the potential of the
adversarial framework.

|. Goodfellow, Generative Adversarial Networks, NIPS 2014
November 2021
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https://arxiv.org/abs/1406.2661

GAN problems



Game Approach Problems

» Discriminator must be optimal on every step of convergence.
» This is not true, you should not overtrain discriminator.
» Loss-function can be quite noisy.

Gradent of the generator with the original cost

| —  After | epoch
Aver 10 epochs

T
Parwg tertara

Martin Arjovsky, Towards Principled Methods for Training Generative Adversarial Networks , ICLR17
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https://arxiv.org/abs/1701.04862

Mode Collapse

EEEEEEEELLLLLL LY

EEEEEEEELLLLLLLL

EEEEEEEELLLLLLLL

»*| GANs choose to generate a small : : ﬁ ﬁ ﬁ ; : ; t: t: t: t: t: t: t: t:

number of modes due to a defect in iiiddddélboLLLLL L

the training procedure, rather than iddédidddlvovvvouy

due to the divergence they aim to fdédédédélvvvouvuuy
minimize. 10k steps 20k steps

|. Goodfellow NIPS 2016 Tutorial: Generative bbb b b b bbb bbb b

Adversarial Network b b 666 L6 666666
bbb b6 b b bbb b6666
bbb b b b bbb 6666

n bbb bbb bLbLLLLLGL
wly SRR & b & b bLb6bLLLLL
| ' L6665 bLbLbLLLLLL

bbb b b bbb bbbbb

50K steps 100k steps

Luke Metz et al Unrolled Generative Adversarial Networks ICLR 2017
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https://arxiv.org/abs/1611.02163
https://arxiv.org/pdf/1701.00160.pdf

Mode Collapse

— G tends to converge to a point l

x* that fools D the most. ! l / / ./

— |n extreme cases, G becomes l\.“
iIndependent on z.

— Gradient on z diminishes. | - l l / /

>| When D restarts:

— Easily finds this x”. A b
® ?

— Pushes G to the next point x™. : : %.’.’o"'i{

T. Che Mode Regularized Generative Adversarial Networks ICLR 2017
D.. Derkach Generative Modeling November 2021 24



https://arxiv.org/abs/1612.02136

Vanishing Gradients

*] For disjoint support of real and s PXreal)
generated data 1o 7 Ppsaudo)

*] An ideal discriminator can
perfectly tell the real and generated
data apart:

D.. Derkach Generative Modeling November 2021

D(G(z)) =0

Toy problem
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Vanishing Gradients

»|Lg = —log D(G(z2))
»] 4PN/~ 0 for generated x

»] 46X/~ 0 for generated x

»| Generator can't train!
»| Need to start closer (how?)

*] Problem is further enhanced
due to noisy estimate from
data.

Y arglax

10 -

08 -

P{Xreal}

P{XFJSEL.IdO} II: IIII

Toy classical GAN




Summary so Far

> Pros:

— Can utilize power of back-prop.
— No explicit intractable integral.

— No MCMC needed.

»| Cons;

— Unclear stopping criteria.

— No explicit representation of gg(x) .

— Hard to train.

— No evaluation metric so hard to compare with other models.

— Easy to get trapped in local optima that memorize training data.

— Hard to invert generative model to get back latent z from generated x.

D.. Derkach Generative Modeling November 2021



GAN ways out



Diminishing Gradients

*] We have seen already that signal data is located on manifold.

»*] GAN case is in fact more complicated, as we need a discriminator that
distinguishes two supports.

*] This is way too easy, if supports are disjoint.

D.. Derkach Generative Modeling November 2021
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Diminishing Gradients: Noisy Supports

*] Let's make the problem harder: introduce random noise € ~ N(0; a*I):
Px+e(x) — IE':y~P(x)[P)<<3(x - ¥).

*] This will make noisy supports, that makes it difficult for discriminator.

Martin Arjovsky, Towards Principled Methods for Training Generative Adversarial Networks , ICLR17
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https://arxiv.org/abs/1701.04862

Feature Matching

Change the objective of the generator:

1B mp(a)f (@) = Erp () f(G(2))]I

Here f(x) can be any property we need (including the output of
another network.

Danger of overtrain to match known tests!

St E R HICE %,

ol
g o
=
SE
é
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Historical averaging

» average with previous parameter values:
t

1 .
16—~ 6Ll

=1
» this allows to create a fake agent that plays the game.

» and solves the problems only in low dimensions.

Salimans et al. Improved Techniques for Training GANs, NIPS16
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https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf

Look into the Future: unrolled GANs

> What if we can look into the future of system?
» We could avoid local optima and optimize better.

» Algorithm:

» At each step we train discriminator 5-10 steps ahead.

> We DO NOT introduce it to the system.

> We show the possible future moves to generator and update
it accordingly.

D.. Derkach Generative Modeling November 2021
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Unrolled GAN: results

Data
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Figure 5: Training set images are more accurately reconstructed using GANs trained with unrolling
than by a standard (0 step) GAN, likely due to mode dropping by the standard GAN. Raw data is
on the left, and the optimized images to reach this target follow for 0, 1, 5, and 10 unrolling steps.
The reconstruction MSE is listed below each sample. A random 1280 images where selected from
the training set, and corresponding best reconstructions for each model were found via optimiza-
tion. Shown here are the eight images with the largest absolute fractional difference between GANs
trained with 0 and 10 unrolling steps.

D.. Derkach Generative Modeling

Luke Metz et al Unrolled Generative Adversarial Networks ICLR 2017
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https://arxiv.org/abs/1611.02163

Conclusions: GANs

»] use Generator-Discriminator game to estimate the distance from generated

distribution to the true one.

»| produce sharp images.

»| reconstruct implicit model of target PDF.

D.. Derkach Generative Modeling November 2021
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Wasserstein Distance



Wasserstein distance

Also called “Earth mover's distance” (EMD)

»| Distributions P(x) and
Q(x) are viewed as

describing the amounts
of “dirt” at point x

> We want to convert one

distribution into the other

by moving around some

amounts of dirt

»|The cost of moving an amount m from x4 to x5 is m X |[x3 — x4||

»]JEMD(P, Q) = minimum total cost of converting P into Q
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ldea of definition

»| Say, we have a moving plan y(xq,x,) = 0:

¥ (x4, x2)dx1dx, — how much dirt we're moving from
|x1,x1 + dxq] 1O [x5, x5, + dx,]

*|Then, the cost of moving from [xq,x; + dx{] to [x;, x; + dx;] is:

|2y — x4 || - y(xq, x2)dx1dx,

»land the total cost is:

‘= j Iz — x| - ¥ (o1, X2)dx1dxy = By, ey (g ) 122 — 24
X1,X2

»|Since we want to convert P to @, the plan has to satisfy:

j y(x1,x2)dx; = Q(x3), j y(x1, x3)dx,; = P(xq)

D.. Derkach Generative Modeling November 2021
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ldea of Definition

»] Let ™ be the set of all plans that convert P to Q, i.e.:

T = { y: vy =0, j Y (x1,x2)dx; = Q(x7), j y(x1, x2)dx, = P(x1) }

X1 X2

> Then, the Wasserstein distance between P and O is:

EMD(P,Q) = inf Ey ,yllx; — x|

7

Optimization over all transport plans - not too friendly
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Wasserstein Distance

For continuous case, there are a set of p-Wasserstein distances, with
Wo(pez, qy) defined with z € M,y € M and a distance D on z,

Wy(pe,gy) = inf / D(x,y)Pdy(z,y),
YEI(z,y) J Al M

where II(z,y) is a set of all joint distributions having p, g, as their
marginals.

D.. Derkach Generative Modeling November 2021

40



W, distance

In particular, W distance with Euclidean norm is:

W(ps:,qy) = inf Lmﬂim,y}dvtmsy}= inf E(||z —yl)

yell{z,y) yell(z,y)

Which brings an evident connection to EMD.

>

D.. Derkach Generative Modeling November 2021

Two dimensional representation of
'5 the transport plan between
horizontal (1) and vertical v pdfs.
Note, that this is not unique plan.
The inf must be taken over all
r possible plans.

Wikimedia
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Convergence Example

d, dsg
—
Py | *——"|Paata Fage Paata P6100 || Paata
TV: L T 0
KL 00 00 0
JS: log 2 log 2 0
W do dsg 0
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Mass Attention

W takes into account the distance
at which the differences in the
distributions are located.

This is exactly what we need to

take into account multiple
solutions!

D.. Derkach Generative Modeling
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W properties hints

P — true PDF, Q — fitted PDF.

»] For a sequence of distributions Qy:

KL(P||Q) = 0 > JS(P;Qn) = 0 > W(P;Qn) - 0,05 p

»] For Qg ~ g¢(2), go(2) continuos

W (Qg; Q) is continuous and can be restricted to differentiable almost

everywhere.

Should we use directly in GAN?
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Lipschitz continuity

»] f is Lipschitz-k continuous if

»| there exists a constant k = 0, such

that for all x; and x,:

|f (x1) — fx) S k- [xg — x5

D.. Derkach Generative Modeling November 2021
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https://en.wikipedia.org/wiki/Lipschitz_continuity

Kantorovich-Rubinstein Duality

P — true PDF, Q — fitted PDF.

W(P;Q) = sup (IEx~P f(x) — [Ex~Qf(x))J

f€ELip,

where Lip, is 1-Lipshitz condition.

D.. Derkach Generative Modeling November 2021
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Integral Probability Metrics

p(x),q(x) — PDF.

yr(P,Q) = sup{ ffdp(x) —fqu(x) :fET}

F is a class of real-valued bounded measurable functions on S.

For F ={f:|Ifll <1} with 1-Lipschitz condition:
Wiis IPM but not f-divergence

B. Sriperumbudur et al. On the empirical estimation of integral probability metrics
S. Nowozin, NIPS2016 workshop talk
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https://projecteuclid.org/download/pdfview_1/euclid.ejs/1347974672
https://www.youtube.com/watch?v=kQ1eEXgGsCU

Conclusions

»| Wasserstein-1 is a distance with desired properties.

»] Kantorovich-Rubinstein duality connects Wasserstein-1 distance to IPM.

*] Lipschitzeness is needed for above to work.

»] Wasserstein-1 distance cannot directly be inserted into f-GAN style*.

*). Song et al., Bridging the Gap Between f-GANs and Wasserstein GANs, ICML 2020
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https://arxiv.org/abs/1910.09779

Wasserstein GAN



Lipschitz-1 Condition and Neural Networks

clipping

No clipping

W(P;Q) = sup (Ex-pf(x) = Ex-of (x)),

fELip, \

IIIIIIIIII
T T T T T
-5.0 -25 0.0 2.5 5.0
X

NS4 7 ‘ g
]

i 2

8
QOOOO ¢
NSNS £ ]
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Lipschitz-1 Condition and Neural Networks

W(P;Q) = sup (Ex-p f(x) — Exgf (%)),

fELip,

»] f is a neural net — discriminator (‘critic’ in the original paper).

»| The expectations is estimated from samples.

»| Lipschitz-1 continuity can be replaced with Lipschitz-k continuity
— estimate k X W(P, Q)

— achieved by clipping the weights of the critic: w — clip(w, —c, ¢) with some constant c.

M. Arjovsky et al. Wasserstein G1AN
5
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https://arxiv.org/abs/1701.07875

WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Neritic = 9.

Require: : «, the learning rate. c, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wg, initial critic parameters. 6, initial generator’s parameters.

1: while 6 has not converged do

for t =0, ..., Nepitic do
Sample {z()}™  ~ P, a batch from the real data.
Sample {29} ~ p(z) a batch of prior samples.
guw <+ Vu [% 221 fw(x(i)> - % 2211 fw<99<z(i)))}
w < w + a - RMSProp(w, g.)
w < clip(w, —c, ¢)

end for

Sample {9} ~ p(z) a batch of prior samples.

go — —Vok S Fulgo(z1)))

11: 6 < 0 — a - RMSProp(0, gs)

12: end while

o
<

D.. Derkach Generative Modeling November 2021
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WGAN: problems solved

1.0 ; ; . ;
\ — Density of real
. . . 08l — Density of fake |
*| the vanishing gradient ' —  GAN Discriminator
. —  WGAN Critic
problem is solved; 0.6

>»| mode collapse problem is
addressed,;

»| rom authors: Weight
clipping is a clearly terrible
way to enforce a Lipschitz

. -0.2f Ina Wi HJ#H Vanishing gradients
constraint. : =i in regular GAN
04— _ , , - .
-8 -6 -4 -2 0 2 4 6 8

https://arxiv.org/abs/1701 .0787553
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https://arxiv.org/abs/1701.07875

WGAN: results

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReL U
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.
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WGAN-GP

*| Weight clipping makes the critic less

: - Largest gradient constrained here
expressive and the training harder to 99

converge P P,
»] Optimal f should satisfy ||[Vf]| = 1

almost everywhere under P and Q
"] Also: [[fll, =1 & |[Vfll =1
»| Can replace weight clipping with a

gradient penalty term: X = ax + (1= a)xy]

. p.: | @~ Uniform(0, 1)
GP = Afmax[(llvff(x)ll —1)%] dx x x; ~ P
4 : Xz ~ Q

GP = AEzp, [(IVef (DI — 1)?]
Ishaan Gulrajanilmproved Training of Wasserstein GANs
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https://arxiv.org/abs/1704.00028

WGAN-GP

»| Weight clipping makes the critic less

expressive and the training harder to 8 Gaussians 25 Gaussians ~ Swiss Roll

converge

»] Optimal f should satisfy ||[Vf] =1
almost everywhere under P and Q

'l Also: [Ifll, =1 < |IVfll =1

o=
&OJI

»| Can replace weight clipping with a

gradient penalty term: X = “[’jl "f' (1 EO‘?;CZ_
GP = AE;_p, [(IV2f (®)I| - 1)?] p: | @ Uniform(®
1
or alternatively (‘one-sided’ penalty): ] X, ~ Q

GP = AEz. p, [max(0, |Vgf (Il — 1)?]

Ishaan Gulrajanilmproved Training of Wasserstein GANs
D.. Derkach Generative Modeling November 2021 56



https://arxiv.org/abs/1704.00028

WGAN: spectral normalization

> Spectral normalisation
proposes to use normalised

weights:
W
Won = ————
where:
||[Whl|2
gW) = max ——
(W) h:h£0 || h|2 i

’
"

Spectral Norm. =&

» this gives constraints on el 1%
gradient: = %,
A B C D 8 F
l (b) STL-10
| 1] Lip & I I a(W)). Figure 6: Generated images on different methods: WGAN-GP, weight normalization, and spectral
normalization on CIFAR-10 and STL-10.

i=1

Miyato et al. Spectral Normalization for Generative Adversarial Networks, ICLR 2018
57
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https://arxiv.org/abs/1802.05957

WGAN: problems

» The expected EMD gradients can differ from the true gradients.
» This leads to problems even for Bernoulli distribution.

o7
L
0 |
.4 |
TR

oz

Wasserstein distance

0.1 ;

(e li] . . a
(] I | 1 ] g

Parameter &

Red for sample gradient expectation, blue is for real gradients solution.
Left to right 8* = 0.6;0.6; 0.9.

M. Bellemare et al. The Cramer Distance as a Solution to Biased Wasserstein Gradients
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https://arxiv.org/abs/1705.10743

Conclusions

>*] WGAN is a power generative model.

»] Simpler training procedure but need to control Lipschitz continuity

»| Several ideas how do this.

»| Still problems:
— Kantorovich-Rubinstein duality only mimicked;

— gradient is stuck near solutions.

D.. Derkach Generative Modeling November 2021
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