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Abstract

Precision timing with solid state detectors is being employed in many areas of particle physics

instrumentation. Applications for pileup rejection and time of flight measurements at the LHC are just

two of many notable examples.

During the past years the principal contributions to the time resolution for various types of silicon

sensors have been studied. The principal contributors to the time resolution are Landau fluctuations,

electronics noise, signal shape fluctuations due to a varying pad response function as well as gain

fluctuations.

We discuss silicon pad and silicon pixel sensors, LGAD sensors as well as SPADs and SiPMs. These

sensors have been simulated using the Garfield++ toolkit. The analytic statistical analysis of the

contributions to the time resolution has been performed, resulting in elementary expressions for the

timing performance of these sensors. These expressions show the basic directions for optimization of

these sensors as well as the fundamental limits to the time resolution.
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• Time resolution of ‘standard’ planar silicon detectors

• Signal processing and center of gravity (c.o.g.) time of a signal

• Contribution from noise, optimum filters

• Contributions from ‘weighting fields’ 

• Time resolution of MAPS sensors

• Time resolution Low Gain Avalanche Diodes (LGADS)

• Single Photon Avalanche Diodes (SPADs), Silicon Photomultipliers (SiPMs)

• SPAD time resolution and efficiency for photons and charged particles

Outline
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Time resolution of ‘standard’ silicon sensors
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Intrinsic time resolution of a ‘large’ silicon pad detector
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In silicon sensors the signal edge is instantaneous (i.e. sub ps level)

• acceleration of electrons to 107cm/s in vacuum is 0.14ps

• passage of the particle through a 50um sensor takes 0.16ps

In Wire Chambers the electrons first have to move to the wires before an avalanche at the wire leads to an appreciable signal 

 intrinsic resolution limit.

In RPCs the avalanche starts instantly, but it still takes some time until the signal reaches the threshold

 intrinsic resolution limit.

 The intrinsic time resolution of a silicon sensor is infinite (sub ps).

 The time resolution in a planar silicon sensor without gain is a question of signal/noise/electronics and specifically the Landau 

fluctuations within the electronics integration time.

Example: d = 300um, Vdep = 58V, V=1.2 Vdep = 68V

d0 = 330um, 𝜏e = 5.6ns, 𝜏h = 16.8ns 
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Total drift time of electrons and holes in the silicon sensor

At high electric fields, the drift-velocity saturates around 

107 cm/s = 0.1μm/ps for both, electrons and holes.

In a 50um sensor at very high voltage the 

electrons and holes take around 500ps to 

move through the sensor.

At high fields (thin sensors, large voltage), the

electric field in the sensor is close to constant,

e and h velocities become saturated and the

average signal becomes a triangle.
Example: d = 300um, Vdep = 58V, V=1.2 Vdep = 68V

d0 = 330um, 𝜏e = 5.6ns, 𝜏h = 16.8ns 
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Electronics processing of a detector signal

Frontend delta response:

Corresponding transfer function:

f(t)

h(t)

-20 log |H(ω)|/|H(0)|

v(t)

tp=1ns   fbw ~250MHz
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tp=0.5ns tp=1ns tp=2ns tp=5ns tp=10ns

f(t)

Electronics processing of a detector signal

v(t)

h(t)

If the peaking time tp becomes larger than the signal length, the peak of the output signal approaches the total charge. What else … ? 
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Electronics processing of a detector signal

In case the electronics peaking time tp is longer than 

the signal duration T, the electronics output signal has 

• the same shape as the delta response

• a pulse-height equal to the total charge of the 

signal

• a ‘time displacement’ of this delta response by the 

center of gravity time tcog of the signal. 

 An amplifier that is ‘slower’ than the signal 

measures the center of gravity time of the signal

Signal duration of T i.e. f(t) = 0 for t>T

Electronics peaking time tp >> T

We are interested in times t>T
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There are many different ways to correct for this slewing effect

• Constant Fraction discrimination

• Standard discrimination using time over threshold to correct for pulse-height

• Standard discrimination  + pulseheight to correct for pulse-height

• Standard discrimination  + total charge  to correct for pulse-height

• Multiple sampling and ‘fitting’ the know signal shape

• ….

Electronics ‘slower’ than the detector signal, time slewing

Delta response shifted by tcog and scaled by Q 

Signal normalized to same  amplitude  time

‘time slewing’

 What is the c.o.g. time resolution of a silicon sensor ?



A high energy particle passing the sensor will experience primary interactions, with an 

average distance of around λ=0.21μm. In each interaction there is a probability pclu(n) to 

produce a cluster of n electrons. The probability p(n, Δz) have n e-h pairs in Δz is therefore 

The probability to have n e-h pairs in the sensor of thickness d, p(n, d) is then 

The cluster size distribution is pclu(n) is typically calculated using the PAI model.

Landau’s approach assumes a 1/E2 distribution for the energy transfer in accordance with 

Rutherford scattering, which leads to an 1/n2 distribution for the e-h pairs

 Landau distribution

11Werner Riegler, CERN

Energy deposit in silicon

PAI model, 

‘plasmon peak’
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Energy deposit in silicon

Most probable number of e-h pairs:

Full width of half maximum  

3160 e-h pairs

14200 e-h pairs
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Center of gravity time of a silicon detector signal

Single e-h pair

After some lengthy evaluation:
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Centroid time of a silicon detector signal

For the Landau Theory

For Si sensors: Important difference 

between r.m.s. time resolution and the 

σ of the core of the distribution. 

For a thinner sensor – the contribution from Landau fluctuation increases.

This worsening of the resolution is superseded by the decrease of e-h drift times.

For v1=v2

T= total e- drift time = total h drift time

= total width of the ‘triangle’

PAI model, Gauss fit

50um sensor: 0.075 x 0.2 x 650ps = 10ps
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Center of gravity time resolution for silicon sensors

50um sensor, 10ps
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Leading edge discrimination

Leading edge discrimination on the signal that is normalized to the total deposited charge.

50um sensor, tp=0.5ns, threshold at 30% of the charge

 5ps time resolution BUT this is unrealistic since S/N becomes too small  Noise will dominate !

50um sensor at 200V for different peaking times

and constant fraction discrimination T=0.8ns

c.o.g. time resolution 
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Noise

For a sensor that is represented by a capacitance,  the noise is 

determined by the amplifier only. The amplifier noise can be 

characterized by the parallel and series noise power spectrum. 

In case the parallel and series noise power spectra are ‘white’ 

we can formulate this as noise resistance Rs and Rp.

The level of this noise is a specification of the amplifier, there is 

no intrinsic noise in the sensor.

This noise level is very specific to the technology, but in 

general, lower noise requires more power (current through the 

input transistor etc.). 

This places practical limits on the achievable noise level in 

systems with high granularity i.e. many channels on a small 

surface.

Rp

en
2

in
2CD

Rs
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Noise and Optimum filters

Let us assume we have a signal f(t) with superimposed 

noise of a given noise power spectrum and we want to find 

the amplifier transfer function that maximizes 

• the signal to noise ratio for the best amplitude 

measurement, or 

• the slope to noise ratio for the best time measurement 

 Theory of optimum filters



A signal f(t) superimposed to a noise with a noise power spectrum w(ω) is processed by a filter with transfer 

function H(iω). The output signal and output noise r.m.s. are 

The signal to noise ration is then 

The expression has an upper limit given by the Schwartz inequality, which relates two complex valued 

functions according to 

We insert 

and have

The equal sign applies if ψ = c1 ϕ and we have the optimum filter transfer function 

The output signal is
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Optimum filter for best signal to noise ratio

f(t)  F(ω)

w(ω)



We want  to minimise the time resolution i.e. maximise the slope to noise

Following the steps from before we find an upper bound for the slope to noise ratio of

And the optimum transfer function as well as the output signal are

Since multiplication with iω refers to the derivative in the time domain we have the 

following relation:

The filter maximising the slope to noise ratio, i.e. the filter giving the best time 

resolution, is equal to the time derivative of the filter that maximises the signal to noise 

ratio !
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Optimum filter for best slope to noise ratio



Assuming a silicon sensor with negligible depletion voltage and saturated drift-velocity,  

the signal shape is a triangle:

For the noise we assume series noise and parallel noise together with a detector 

capacitance CD

The maximum slope to noise ratio is 

If we neglect parallel noise we have 

This filter is a-causal and can only be approximated in practise.

21W. Riegler, Detector Signals

Optimum filter for best timing

Input signal

Delta response 

of optimum filter

Output signal

Rp

en
2

in
2CD

Rs



Preamp delta response

For the noise we assume series noise and parallel noise together with a detector 

capacitance CD

The output signal is 

And the maximum slope evaluates to

To find the optimum peaking time and best time resolution  we therefore have to minimise 

the function

22
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Realistic preamp transfer function

n=1n=2
n=4
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Rp

en
2

in
2 CD

Realistic preamp transfer function

n=1n=2
n=4

Neglecting parallel noise (which is a good approximation in most practical 

applications) the optimum electronics peaking time tp is between T and 1.5T.

The achieved time resolution is only about 30% worse than the best achievable 

one with the optimum filter !

This will give the smallest noise contribution to the time resolution. 

n=1, 2, 3, 4

Time resolution with optimum filter

Time resolution for ‘standard’ 

preamp delta response.
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Combined effect of Landau fluctuations and noise 
If the noise dominates, the optimum peaking time is about tp ~ 1-1.5T

If the noise is at a similar level to the contribution from Landau fluctuations, the optimum peaking time  is still 

around the same level tp ~ 1-1.5T and the time resolution is equal to the the c.o.g. time resolution of the silicon 

sensor. 

If the noise is subdominant, shorter peaking times can be improve the time resolution, but with the divergence of 

the noise contribution at low tp this will not reach far below the c.o.g. time resolution. 

In short: tp ~ T and σ = σc.o.g. ⊕ σnoise give a good order of magnitude for the achievable time resolution

Landau Fluctuations 

Landau Fluctuations ⊕ Noise 

Noise scales with 

enCD

c.o.g. time resolution
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In case noise is not dominant, the time resolution of a silicon sensor is somewhere 

between zero and the c.o.g. time resolution.

For a silicon detector signal with total duration T, the series noise contribution is 

minimised for amplifiers of tp ~ T. 

For very low noise a time resolution better than the c.o.g. time resolution can be 

achieved, but the divergence of the noise contribution for tp  0 will limit this 

improvement.

Time resolution of ‘standard’ silicon sensors
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Effects of finite Pixel Size

Up to now we discussed the situation of a very large pad of size w>>d 

i.e. and ‘infinitely extended parallel plate geometry’. 



A uniform charge distribution

Charge moving towards the strip:

Charge moving away from the strip:

Total induced current on the strip

For very wide strips (parallel plate geometry) the 

induced charge from the movement of +λ and –λ is the 

same and equal to λd/2.

For small strips, the fraction of the signal due to the 

charges moving towards the strip increases.  

27

Weighting field of a strip in a parallel plate geometry

w>>d

w=d

w=d/2

+λ

-λ

v1 = 3v2 e.g. electrons 

moving to the strip and 

holes moving away from 

the strip

v1

v2d
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Weighting field of a strip in a parallel plate geometry

w>>d

w=d

w=d/2

+λ

-λ

v1 = v2/3 e.g. holes 

moving to the strip and 

electrons moving away 

from the strip

v1

v2d

Different positions of the particle inside the 

pixel will lead to different pulse-shapes.

The varying signal shape will lead to 

variations in the c.o.g. time and therefore 

affect the time resolution.

This is also called the ‘weighting field effect’.
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Weighting field fluctuations

w/d = pixel size/detector thickness

This weighting field effect is strongly 

correlated with the Landau fluctuations. 

The structure of the expression for the 

resolution is however similar to the one 

before.
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Weighting field fluctuations

Because electrons and holes have different 

velocities, it makes a significant difference 

whether the electrons or the holes move to the 

pixel.

For higher fields (thinner sensors) this 

difference will decrease.

The dependence on the different parameters is 

complex. 

These fluctuations can dominate the time 

resolution !
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Time resolution of ‘standard’ silicon sensors

Good time resolution demands thin sensors.

Thin sensors give small charge and large capacitance i.e. unfavorable S/N and k/N.

Capacitance can be reduced by making the pixels small.

If the pixel size is in the same order as the sensor thickness, the weighting field 

fluctuations start to dominate … and there will be many channels …

… between a rock and a hard place …

 Sensors with internal gain to overcome the noise limit (like gas detectors !)

 Turn the by sensor 90 degrees and realise a parallel plate geometry in 3D !

(see slide 62, 63)
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Time resolution of MAPS with small readout diodes

Up to now we have investigated silicon sensors with e-h drift in a 

homogeneous electric field perpendicular to the readout electrodes.

One flavour of MAPS sensors uses a small ‘collection’ electrode to minimise 

the capacitance and therefore the noise  E.g. ALPIDE

Since the ‘weighting field’ of the ‘readout electrode’ is concentrated around the 

diode, the signal consists to a good approximation of a sequence of delta 

pulses for each electron arriving at the diode. 

 Arrival time distribution.

The time resolution will be somewhere between the arrival time statistics of the 

first electron and the center of gravity time of all electron arrival times.

 Thesis Jan Hasenbichler, to be defended Nov. 2021
GARFIELD++ simulation
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Time resolution of MAPs with small readout diodes

Very fast amplifiers allow in principle excellent time resolution.

Of course – the ballistic deficit is high and the signal/noise and 

slope/noise ratio are low.

This puts extreme demands on noises performance of the 

amplifiers, resulting in significant power consumption.

 In practise, fast charge collection and amplifier peaking 

times similar to the total charge collection time will be 

needed.

400ps seem achieveable in these simulations.

GARFIELD++ simulation

GARFIELD++ simulation
Optimized hexagonal pixel geometries:

E.g. Fastpix with <200ps time resolution

 See slide 63 
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Time resolution of LGADs
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Avalanche Photo Diode, Low Gain Avalanche Diode

Idea goes back to the 1960ies.

A high field region is implemented in a silicon sensor by 

doping.

Electrons will produce an avalanche in this high field 

region.

The high field region is implemented by doping and 

related ’space-charge’ in the volume.

The sensor is operated in a region where there is electron 

multiplication but not yet hole multiplication.

This allows to have thin sensors (high field, short signal) 

but still have enough signal charge to overcome the 

limitation from noise.

For higher fields  electron+hole multiplication 

avalanche divergence  quench resistor  SiPM

Electron (alpha)  and hole (beta)  

multiplication coefficient in silicon

12/2/19
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AvalanchePhotoDiode

holes

e
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Total drift time for a given sensor thickness

12/2/19

A high field region is implemented in a silicon sensor by doping.

Electrons will produce an avalanche in this high field region.
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An e-h pair is produced at position z.

The electron arrives at z=0 at time T=z/v1.

The electron multiplies in the high field in the layer at z=0 (infinitely thin).

The holes move back to z=d inducing the dominant part of the signal (all in this 

approximation).

Centroid time resolution for standard silicon sensor:

Centroid time resolution for LGAD

The signal is now defined by the arrival time distribution of the electrons at the 

gain layer.

LGAD
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LGAD

LGAD centroid time resolution Standard silicon sensor centroid time resolution

50um sensor at 200V:  30ps

200um sensor at 200V: 140ps

50um sensor at 200V: 13ps

200um sensor at 200V: 70ps

The c.o.g. time resolution of LGADs is worse than the one for standard silicon sensors due to the very different signal 

characteristics – essentially an electron arrival time distribution.

Of course – the fact that the signal is larger by a factor 10-15 allows much more relaxed noise requirements, larger 

pixels etc. …
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LGAD Leading edge discrimination

Standard silicon sensor
For LGADs the time resolution does not improve over the centroid 

time resolution when using leading edge discrimination on the signal 

normalized to the total deposited charge.

While for standard silicon sensors, the leading edge of the signal is 

proportional to (equal to) the total amount of charge in the sensor, for 

the LGADs there is no relation between the leading edge and the 

total charge deposit.
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Weighting field fluctuations

w/d = pixel size/detector thickness

The effect of finite pixel size and varying 

signal shape with the weighting field is de-

correlated from the Landau fluctuations, in 

contrast to the standard silicon sensors.

The expression very basic and universal !

• The Landau fluctuations are related to 

the total electron drift-time

• The weighting field fluctuations are 

related to the total hole drift time.

These expressions are valid for perpendicular tracks

T1=d/ve = total electron drift time

T2=d/vh = total hole drift time
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Time resolution of LGADs

• Centroid time resolution is around factor 2 worse than for standard silicon sensors. 

• The big advantage is of course the much increased signal charge and therefore much relaxed noise specification, 

which allows very thin sensors for excellent time resolution as well as large pads. 

• The resolution cannot be significantly improved when using faster. The centroid time resolution is essentially THE 

time resolution of the LGAD sensor.

• Weighting field fluctuations and Landau fluctuations are de-correlated. 
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Time resolution of Single  Photon Avalanche Diodes
(SPADs) 
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Single Photon Avalanche Diodes

d

x=0 x=d

elec.

hole

For very large electric fields, also the holes start 

to contribute to the avalanche.

α dx = probability for an electron to produce an 

additional e-h pair along a distance dx

β dx = probability for a hole to produce an 

additional e-h pair along a distance dx
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SPADs Breakdown Condition

α dx = probability for an electron to produce an 

additional e-h pair along a distance dx

β dx = probability for a hole to produce an 

additional e-h pair along a distance dx

d

x=0 x=d

elec.

hole
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Solution for the average Signal

A number of ne
0 electrons and nh

0 holes are placed at x=x0 at time  t=0.

What is the average distribution of electrons  ne(x,t)  and holes nh(x,t) in the 

sensor at time t ?

What is the total number of electron Ne(t) and holes Nh(t) in the sensor at time t ?

Average signal I(t) = EW [ Ne(t) ve + Nh(t) vh ]

λ is must satisfy the ‘Eigenvalue’ equation:

The equation has a finite number >=1 of 

real solutions and an infinite number of 

complex valued solutions.

 For long times, the largest 

real Eigenvalue λ dominates.
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Solution for the average Signal
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Solution for the average Signal
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Quenching

The average signal will increase until the number of charges that are deposited on 

the capacitor lowers the voltage across the diode below the breakdown voltage. 

The ‘quench’ resistor will determine the rate of recharging of the SPAD.

The voltage drop represents the SPAD signal.

This is the same principle as the Geiger counter, where the divergence of the 

avalanche is due to electrons and photons (produced in the avalanche and 

producing more ionization electrons).

C

R

ΔV=Q/C
SPAD

V

Rutherford and Geiger 1908
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SPAD time resolution

Time measurement by  setting a threshold to the diverging avalanche signal.

First investigate a SPAD without boundaries:

 Exact solution exists

 Features are similar to the (much more complicated) SPAD with boundaries
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Fluctuations of the avalanche, SPAD without boundary

Time response function when placing a threshold of n 

electrons to the signal.
Approximation for ‘large thresholds’

 Time resolution is independent of the threshold

 Time resolution is inversely proportional to the ‘risetime’ of the signal

 For a single e-h pair, A=1 and                 = π/√6 = 1.28=O(1)
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Avalanche fluctuations, SPAD with boundary

Equations for the average electron and hole densities Equations for second moment of the electron and hole densities

… surprisingly complex. 

Solution gives important insights: 
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Time resolution of SPAD

γ determines the exponential growth of the avalanche for long times

1/γv* determines the time resolution when setting a ‘high’ threshold to the signal !

The coefficient                 is O(1)  1/γv* IS the approximate time resolition of a SPAD

The electron and hole densities become fully correlated over the timescale of 1/γv* i.e. there are no more 

fluctuations. The fluctuations take place in the very beginning of the  avalanches – from there on there is only 

deterministic grow of the avalanche. 
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Time resolution aSPAD

Approximate r.m.s. SPAD time resolution 1/γv*

<10ps is in the cards … 
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Other contributions to the time resolution of SPADs

Up to now we assumed a given number of electrons and holes at a given position x0.

 Only avalanche fluctuations are contributing to the time resolution.

For the measurement of single photons, the conversion point in the gain layer can vary.

For SPADs with a conversion layer, the arrival time distribution of the electrons at the gain 

layer will contribute.

For the measurement of charged particles, the Landau fluctuations of the charge deposit 

will contribute to the time resolution.

Conclusion (see paper): for all these scenarios,  the time resolution stays around                    

with c0 in the order of 1-3.  

Photon interacting at a random position 

inside the gain layer

MIP

c0

c0

Expect excellent time 

resolution for MIPs
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Efficiency of SPADs

Applying a voltage below the breakdown voltage, the avalanche will never diverge and a finite number of electrons and holes will

be produced in the avalanche.

Applying a voltage above the breakdown voltage, some avalanches will diverge and some avalanches will only produce a finite 

amount of charge, typically much too small to be detected. 

A SPAD is considered efficient only in case an avalanche diverges.

Probability Pe(x) for single electron at position x to produces a diverging avalanche and

Probability Ph(x) for single electron at position x to produces a diverging avalanche
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Efficiency of SPADs

Solution for a SPAD of thickness d
d

x=0 x=d

elec.

hole

Efficiencies for single electrons and holes.
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Efficiency of SPADs for MIPS

Solution for a SPAD of thickness d

Once  a MIP leaves a cluster in a SPAD that 

is biased above the breakdown voltage, 

there is a  quite high probability that a 

diverging avalanche is produced. 

Efficiency ~ 1-exp[-d/λ]
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https://cds.cern.ch/record/1500583 https://garfieldpp.web.cern.ch/garfieldpp/https://garfield.web.cern.ch/garfield/

Garfield and Garfield++
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https://doi.org/10.1016/j.nima.2005.08.064https://magboltz.web.cern.ch/magboltz/

Magboltz and Heed

https://doi.org/10.1016/j.nima.2005.08.064
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Timing simulations for silicon with GARFIELD++

Jan Hasenbichler (CERN TU-Vienna): monolithic silicon detectors (ALIPIDE), cluster 
size, efficiency, time resolution

Ann Wang (Harvard University): time resolution of silicon detectors, LGADs, frontend 
electronics, noise

Francesca Carnesiecchi (Bologna): time resolution of LGADs 

Marius Maehlum Halvorse: time resolution of silicon sensors

H. Schindler & EPFL group of  E. Charbon: time resolution and efficiency of SPADs

D. Janssens & INFN Torino group of N. Cartiglia: time resolution and efficiency of AC-
LGADs 

LGAD

Interfacing to GEANT:

ALPIDE
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Thank You !
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3D sensor realising a parallel plate geometry, TimeSPOT

L. Anderlini et al., Intrinsic time resolution 

of 3D-trench silicon pixels for charged 

particle detection. JINST 15, P09029, 

2020.

D. Brundu et al., Accurate modelling of 

3D-trench silicon sensor with enhanced 

timing performance and comparison 

with test beam measurements. JINST 16, 

P09028, 2021.

For a perfectly perpendicular track: 
‘box’ signals from electrons and holes. 

Landau fluctuations affect just the total pulse-
height, which can be corrected.

c.o.g. time of the signal

Variance of the c.o.g.  Time for uniform distribution of 

tracks

d

Total charge from the 200um sensor but timing 
characteristics from a 25um sensor  !

 10-20ps achievable and 

indeed achieved !

Evaluation of the formula
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FASTPIX: a monolithic CMOS Sensor with <200ps timing

WORKSHOP ON PICO-SECOND TIMING DETECTORS FOR PHYSICS
9–11 Sep 2021

University of Zurich

Eric Buschmann

https://indico.cern.ch/event/861104/contributions/4503032/

< 200ps achieved with a MAPS sensor !

https://indico.cern.ch/event/861104/

