
Multithreaded Data Quality Assessment
in AthenaMT (+ consequences)

Peter Onyisi

HSF Frameworks Meeting, 6 Oct 2021

2

Overview
● ATLAS offline data quality

monitoring (DQM) chain is used
to sign off data for good run lists
and to provide feedback to
optimize operation of the detector

● Histograms produced in Athena
reconstruction are a major input
to the system

– runs both offline and online
● LHC shutdowns + migration to

multithreaded framework
provide opportunity to update
system

3

Introduction
● Performance of detectors & calibrations is monitored with histograms

created in the reconstruction workflow
– O(10%) of data promptly processed in the “express” data stream, then full “Main”

data 48 hours after end of run after calibration loop
– detector monitoring algorithms need access to RAW data or quantities only

available during reco (not stored in AOD) – monitoring algorithms must coexist
with reco

● Reconstruction has been migrated to multithreaded AthenaMT in order to
improve required memory/CPU core ratio

– earlier effort: multiprocess (copy-on-write) “AthenaMP”
– DQ a major cause of large memory use of AthenaMP – each process gets its own

copy of histograms
– histograms need to be shared between threads to achieve good DQ memory

scaling

4

Strategy
● Share a new jointly-developed core framework with High Level

Trigger monitoring
– able to leverage performance improvements, bug fixes, feature

implementations from both
● MT-safe histogramming is tricky (and requires cooperation

between all units): centralize hard parts
– THistSvc design does not provide sufficient MT safety in histogram

creation & management operations (MT-safe filling is “simple” part)
– avoid global ROOT locks as much as we can
– approach: programmers no longer touch raw histograms; all operations are

handed in core libraries
– AthenaMT works fairly hard to make the other parts of algorithms re-

entrant (execute methods are const, etc.)

5

Programmer Interface
● Histograms defined in Athena job Python

configuration
– extensive API to simplify tasks, e.g. for defining

arrays of histograms for different detector regions
– TH*, TProfile, TGraph, TEfficiency, TTree

supported: can also support other backends
although not used at present

– histograms defined by variable names to be
plotted

● Histograms filled in C++ event loop by
providing variable names & data to
histogramming tool

– actual fill of histograms occurs in centralized code
that determines what histograms can be filled
given provided data

// fill vectors

6

Critical Path: Lookup
● User code provides a list of what amounts to (variable name, variable data) pairs to

framework in the fill() call
● Framework uses variable names to resolve which histograms need to be filled on each

call
– variable name scoped within a “group” (= Athena tool instance); can have many groups for a single

monitoring algorithm
– slightly pathological case: “a bunch of histograms for each of > 1000 muon detector chambers,

distinguished by the name of the variables we call fill() with”
– patterns quite different in offline and in trigger code

● User code usually calls fill() with a very small set of possible arguments, and set of
histograms doesn’t change once job starts: get enormous speedup by caching the lookups

● Also provide methods for users to provide vector data instead of scalar data: only do
expensive lookup once per event instead of inside tight inner loops

– “cutmask” variables can be provided for histogram definitions to only plot a subset of a vector
● Performance checked with profiler runs with regularity

– can be quite slow if naively used, but rarely a problem once code is optimized

7

Critical Path: Histogram Filling
● Biggest issue: minimize memory motion of data values

– avoid intermediate representations of data when possible
– provide an interface to fill with arbitrary functions of elements of a collection

(as long as collection supports operator[])
● As always, lots of subtle places for race conditions to creep in

– e.g. rebooking of time-dependent histograms in multiple threads
– THistSvc is missing an atomic “check if histogram exists, if not book”

operation
● Actual filling protected behind per-histogram locks

– Even running nothing but monitoring algorithms on an AOD, at 40 threads,
DQ framework locks show no significant contention (much bigger effects in
event I/O, etc.)

8

Histogram Framework Status
● At this point the framework is quite mature

– still adding a few features as requested, e.g. “rolling last-N luminosity block” plots or
prettier autogeneration of histogram titles

● Almost all Run 2 monitoring algorithms have been migrated to the new
framework

● Strategy of isolating histogram-handling code in central, carefully-managed
code has paid off

– framework bugs can be fixed for all systems at once
– clear best practices, things aren’t reinvented by every system

● DQ CI & other tests fairly frequently catch breakage in other domains
(unintentional AOD output changes, subtle problems in multithreaded I/O ...)

● Some small reduction in functionality largely addressed by next part of
presentation...

9

Histogram Postprocessing
● Histogram production has several phases

– an accumulation step with commuting & reversible operations (usually
addition to a bin of an array) in a single reconstruction job

– merging of results from multiple jobs
– optional “postprocessing” (e.g. make a new plot showing mean residuals)

● Similar to map-reduce (except that often reduce is “trivial” histogram
addition)

● Postprocessed histograms are in general not possible to merge
between jobs coherently

– e.g. efficiency plots really need to keep numerator and denominator separate
until final plot making, which is why ROOT now has TEfficiency

● In past, used to allow arbitrary C++ postprocessing inside Athena (run
at termination of a job)

– this isn’t compatible with the new monitoring architecture (user algorithms
have no access to the histogram data) so is now forbidden

– introduce a new system to handle postprocessing

Reco Reco Reco

RAW
file

Merge

Postprocessing

RAW
file

RAW
file

Final histogram file

10

Postprocessing Engine
● Introduce generic framework for operations on histograms: histgrinder

– complete factorization of histogram processing logic from access: handled via
I/O plugins (ROOT file, ATLAS online histogramming system, Athena THistSvc,
...)

– framework does not require any specific histogram technology
– processing algorithms written in Python (but can use cppyy for speed)
– pattern matching to simplify processing of similar histograms (e.g. different

detector layers/regions)
– for online operations: accepts histograms as they arrive & updates outputs

● ATLAS implementations:
– offline: ROOT file ROOT file→

– online: distributed online histogram (OH) system OH→

– Athena piggyback for online: THistSvc THistSvc in parallel to the reco job→

Identical Python postprocessing code in multiple environments

https://github.com/ponyisi/histogram_postprocessing/tree/master/histgrinder

11

Example Histgrinder Configuration

Python function to call

Additional configuration for function

Same YAML configuration & user code used for offline and online applications;
only difference is I/O plugins

Regex groups which make
distinct output histograms

Regex group which specifies
multiple inputs to function

12

Summary
● New histogram production framework introduced with

multithreaded AthenaMT upgrade
● Necessitated parallel deployment of a new histogram

postprocessing framework
● Both deployed and used for Run 2 data reprocessing validation &

cosmics data taking

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

