

- SUSY Searches with First ATLAS data

CAT physics meeting, Apr. 18th 2007 **Till Eifert** (Geneva U.) On behalf of the CAT SUSY group: Stefan Ask, Jamie Boyd, Christophe Clement, Amir Farbin, Andreas Hoecker (CERN), Monica Dunford (Chicago U.), Pedro Urrejola (PUC Santiago Chile)

CAT SUSY group overview

Activities

- mSugra study (>=1 lepton), presented here (CSC-5)
- Electron ID in specific SUSY (lots-of-jets) environment (CSC-5)
- exclusive (>=2 lepton) analysis: Stefan Ask, Johannes Haller, & Christophe Clement (CSC-6)
- Lots of common tool developments

Minimal SuperGravity (mSUGRA)

Quick reminder of mSugra ...

Characteristic SUSY "Cascades" at the LHC

- Conserved *R*-parity requires existence of a lightest stable SUSY particle = "LSP". Since no exotic strong or EM bound states (isotopes) have been observed, the LSP should be neutral and colourless → WIMP !
- □ The experimental signature of the LSP would be just as the one of a heavy neutrino !
- □ The LSP is typically found to be a spin-½ "**neutralino**", a linear combination of gauginos (in much of the SUSY parameter space the neutralino is a mixture of photino and zino)

Data samples

- mSugra signal
 - Grid in parameter space
 - $A_0 = 0$
 - tan β = 10
 - sign μ = +
 - scalar mass m₀ = 0 .. 3TeV
 - Gauginos mass m_{1/2} = 0 .. 1.5 TeV
 - 5k events on each par. Point
 - □ All AtlFast 12.0.6
- SM Backgrounds
 - Consider various SM bkg samples, see next slide
 - All AtlFast 12.0.6+
- Software
 - Isajet 7.75 (for the mSugra spectra) + HERWIG/Jimmy
 - AtlFast (Athena) 12.0.6
 - HighPtView
- Production
 - □ LCG grid (usgin ganga)
 - Private production

SM Background Samples

PreSelection

#evts_{100pb⁻¹} 874 881
874 881
881
330
0.1
65
16
3092
3
12
tatistics
0

Background efficiencies

PreSelection bkg distributions

PreSelection .. signal

TDR SUSY analysis

- ATLAS TDR vol. II, page 820
- Reach for S/sqrt(S+B) > 5 for various
 SUSY signatures in the mSugra parameter space
- TDR Selection
 - Transverse mass (I, MET)
 - ≥ 100 GeV
 - "..reduce W+jet bkg.."
 - Jet cut
 - ≥ 2 Jets
 - $pT \ge 100 \text{ GeV}$ optimize pT cut for each point
 - MET
 - ≥ 100 GeV optimize cut for each point
 - □ transverse sphericity
 - > 0.2
 - ".. To reduce dijet background .. "
 - Lepton
 - pT > 20 GeV
 - Eta < 2.5
- Integrated lumi = 10 fb⁻¹

TDR one lepton analysis

Selection

- □ Transverse mass (I, MET)
 - ≥ 100 GeV
 - "..reduce W+jet bkg.."
- Jet cut
 - ≥ 2 Jets
 - optimize pT cut for each point
- MET
 - Optimize cut for each point
- transverse sphericity not used
 - variable missing in some ntuples ☺

Optimization with TMVA

- Simple box cuts
- Optimize for min p-value (max sigma)
 - W bkgs
 - T1 bkg
- Resulting reach
 - ≥ 10 signal evts
 - Significance ≥ 5 sigma
- For integrated luminosities:
 - 100 pb⁻¹
 - 10 fb⁻¹

Background efficiencies

proc.	transMass ε	$\sigma_{PS}^{}(pb)$	# evts _{TDR}	#evts _{100pb-1}
Wenu	43.5%	3.8	4k	380
Wmunu	43.4%	3,8	7k	382
Wtaunu	47.5%	1.6	2k	157
Znunu	~100 %		1	~0
Zee	~33%		4	~1
Ztautau	44.9%	0.3	1k	29
Zmumu	40.8%	0.06	0.3k	6
T1	47.3%	14.6	22k	1462
J4	~100%		1	~3
J5	~100%		2	~12
J6	?		0	
J7	?		0	
J8	~75%	2x10 ⁻⁶	3	~0

TMVA cut optimization

Signal: mSugra point @ m₀=900, m_{1/2}=150

April 18th, 2007

Till Eifert - CAT physics mtg

TMVA cut optimization .. II

Signal: mSugra point @ m_0 =900, $m_{1/2}$ =750 ϵ_{signal} = 0.505 ϵ_{bkg} = 0.00092

Var	Min	Max
Jet_pT1	132 GeV	2 TeV
Jet_pT2	47.8 GeV	1.4 TeV
MissingEt	559 GeV	2.4 TeV

Signal: mSugra point @ m_0 =900, $m_{1/2}$ =150 ϵ_{signal} = 0.575 ϵ_{bkg} = 0.13

Var	Min	Max
Jet_pT1	82 GeV	1.8 TeV
Jet_pT2	135 GeV	704 GeV
MissingEt	101 GeV	965 GeV

All opt result

April 18th, 2007

Detailed numbers ... @10fb⁻¹

- Tables: Events and efficiencies after final selection (TMVA)
- Signal @ m₀=300, m_{1/2}=150
 - □ S/sqrt(S+B) = 194
 - StatTools::Poisson .. p-value too small
 - Though, would make a huge difference since tails of gaus and poisson are very different
- Signal @ m₀=300, m_{1/2}=450
 - □ S/sqrt(S+B) = 20.0
 - □ StatTools::Poisson = 23.9

Sample	TMVA eff	Events
Signal @ m0=300, m12=150	0.869	91225
Wenu	0.506	19238
Wmunu	0.504	19288
Wtaunu	0.505	7916
Zee	0.75	53
Zmumu	0.39	255
Ztautau	0.604	1762
Znunu	0.0	0
J5	0.5	620
Other Js	0.0	0
T1	0.556	81283
Bkg sum		130416

Sample	TMVA eff	Events
Signal @ m0=300, m12=450	0.368	932
Wenu	0.005	195
Wmunu	0.006	245
Wtaunu	0.008	133
Zee	0.0	0
Zmumu	0.0	0
Ztautau	0.004	11
Znunu	0.0	0
J4J8	0.0	0
T1	0.004	653
Bkg sum		1238

Optimizing each point ?

- Optimizing each point separately effectively means having one analysis per point...
 - □ decreases rate of the statistical type-II error (missing a true signal) ☺
 - □ increases the rate of the statistical type-I error (finding a wrong signal) ☺
- One needs to find a balance
 - Divide parameter region into regions with different signatures => optimize on as few points as possible...?

A single optimization point

- Apply set of optimized cuts of signal @
 - m₀=300, m_{1/2}=150
- **5**-sigma region smaller, see sigma plot
- High-sigma points stay
- Low-sigma points gone

Ratio of significance w.r.t. "all optimized points" plots

One set of optimized cuts .. II

- Try lower-sigma point:
- Apply set of optimized cuts of signal@
 - m₀=1500 m_{1/2}=450
- High-sigma points go down, but ...
- Keep some more low-sigma points

Ratio of significance w.r.t. "all optimized points" plots

Systematics

- Study the effect of background uncertainties on the significance
 - Add uncertainty to T1 sample
 - Add uncertainty to W samples
- Look at the ratio w.r.t. to plot w/o errors
- Theory estimate: T1: x-section 830 ± 100 pb .. due to choice of factorisation/renormalisatoi n scale and predicted uncertainties in the PDF-s (hep-ph/0204244)

April 18th, 2007

Technicalities .. tools

Development of various tools within our group (all in CVS!)

- HighPtView
 - Production of common root ntuple
 - □ See: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/HighPtView</u>
- SUSYView
 - □ Specialisation of HighPtView for additional variables: AllMeff, sphericity, ...
 - □ See: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/SusyView</u>
- SPyRoot
 - □ An interactive PyRoot analysis framework, useful for e.g.
 - Preselection (write out new ntuples)
 - train & apply TMVA
 - Nice plotting
 - □ See: http://atlas-sw.cern.ch/cgi-bin/viewcvs-atlas.cgi/groups/catsusy/SPyRoot/
- SFrame
 - □ As SPyRoot, but based only on ROOT and runs as stand-alone program
 - □ See: <u>https://twiki.cern.ch/twiki/bin/view/Main/SFramePage</u>
- StatTools
 - Calculate significance in a "count" analysis in the presence of multiple backgrounds with uncertainties. Implemented methods:
 - Gauss approximation
 - Poisson approximation & Poisson analytical
 - toy MC
 - See note: <u>http://hoecker.home.cern.ch/hoecker/significance.pdf</u>

Conclusions / Outlook

- Contribution to CSC 5 note
 Lep (electron) ID in SUSY environment
 mSugra study (presented here)
 SM background validation with first data
 common tools developments
- need to find out best (most sensitive) cut approach (single cut, cut as function of integrated lumi, multiple cut regions) *including* systematics

Backup slides

HighPtView

- EventView: Generic Analysis Data object
- EV Builder Toolkit: General analysis tools.
- EV Configuration: Modules (grouping + configuration) of tools for doing common tasks.
- HighPtView: Generic Analysis package running in production ⇒ Standard:
 - Particle selections
 - Truth/Trigger Match
 - Output
 - Goal: serve as benchmark/starting point for analyses
- Physics groups customize HighPtView for specific analyses ⇒ SUSYView, TopView, ...

HighPtView/SUSYView...

- HPTV ntuples will be made by central production, and will be accessible through dq2.
- But HPTV is meant to be generic... SUSYView is meant to be for SUSY WG.
- Lots of people run HPTV themselves with customization for their specific needs.
- SUSYView today: Just HPTV + one extra "module":
 - Multiplicities of various objects
 - Sphericity + FW moments
 - □ M_{eff}
 - Higher detail level than default HPTV

FullRec0->Draw("four_C4_Meff","Jet_C4_N>3 && MissingEt>100000 && AllFS2D_C4_Sphericity > 0.2 && Jet_C4_p_T[0]>100000 && Jet_C4_p_T[1]>50000 && Jet_C4_p_T[2]>50000 && Jet_C4_p_T[3]>50000")

- SV used by many groups within SUSY WG.
- Central production of SV ntuples coordinated between various groups (CERN, UTA, Freiburg, LBL, ...)

Background Samples .. II

process	\$	description	generator	σ_{gen} (pb)	EventFiler	٤ _{EF}	# evts _{disk}	$\sigma_{EF}^{}$ (pb)
ttbar	5201	ttbar "l+jets" , high top pt	MC@NLO/Jimmy	854	TTbarLepton : 1 charged lepton from W decay & top pt > 200GeV	12%		100
ttbar	5204	ttbar all hadronic	MC@NLO/Jimmy					369
ww	5985	Produced by central team	HERWIG	24.5	LeptonFilter, Pt≥10, eta≤2.8			
ZZ	5986	Produced by central team	HERWIG	2.1	as above			
WZ	5987	Produced by central team	HERWIG	7.8	as above			
Z + bjets	5178		AcerMC/Pythia	205	as above	14.8%		30.3

Signal distributions

April 18th, 2007

26

TMVA variable correlations

Signal: mSugra point @ m₀=900, m_{1/2}=150

Choosing opt ε_{signal} point

- Calculate Siginificance for each bin (ε_{signal})
 - All bkg samples
 - Signal sample
 - Poisson distribution (StatTools, see CVS: groups/catsusy/StatTools)
- Find maximum significance yields best ε_{signal} point