No-scale Supergravity Hybrid Inflation with Broken R-symmetry

Ahmad Moursy

Cairo University

SUSY 2022 Ioannina, Greece, June 28th, 2022

Outline

- Supergravity Inflation Model Building
- Inflation in No-scale Supergravity
- Mybrid Inflation in No-scale Supergravity
- Tribrid Inflation in No-scale Supergravity inducing inverse Seesaw Mechanism

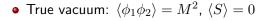
Supergravity inflation model building

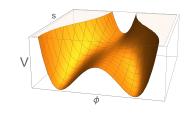
- Slow-roll conditions: the eta problem Shift symmetry - R-symmetry - No-scale models
- Minkowski vacuum: fine-tuned value of the cosmological constant. In particular, SUSY breaking in flat space at the end of inflation.
 - DW = 0, W = 0 at the vacuum for SUSY case
 - No-scale supergravity
- Single-field inflation, the simplest option and a sufficient condition to avoid unacceptably large isocurvature fluctuations.
 - Guarantee that all other fields are stabilized during the inflation
- Connection with low energy physics (TeV SUSY breaking scale) Study the reheating scenarios, leptogensis,.....

Supersymmetric Hybrid Inflation

ullet The most general form of a superpotential that is renormalizable and respects $U(1)_R$ symmetry

$$W = \kappa S(\phi_1 \phi_2 - M^2)$$





- D-flat direction $|\phi_1|=|\phi_2|$. During inflation $\phi_1=\phi_2=0$ and universe is dominated by constant vacuum energy $\kappa^2 M^4$.
- ullet CW 1-loop correction provides a slope for S roll down.

R-symmetry - important advantages:

- ullet preventing higher order terms in S
- ullet supergravity corrections to the inflaton mass (no η -problem)
- Low energy phenomenology

No-scale Supergravity Inflation

- No-scale supergravity offers a natural solution to the η -problem, and can yield an inflation potential with a plateau adequate for slow rolling due to the noncompact $SU(N,1)/SU(N) \times U(1)$ no-scale symmetry. No R-symmetry. SUSY can be broken at Minkowski vacuum.
- The model of Ellis-Nanopoulos-Olive (ENO) 2013, relies on the no-scale symmetry $SU(2,1)/SU(2) \times U(1)$

$$W = \frac{\mu}{2}S^2 - \frac{\lambda}{3}S^3,$$

$$K = -3\log\left[T + \bar{T} - \frac{|S|^2}{3}\right]$$

• The superpotential doesn't respect R-symmetry and the resulting inflation potential for canonical scalar field x is the Starobinsky potential for $\hat{\mu} = \lambda$

$$V = \frac{\hat{\mu}^2}{4} \left(1 - e^{-\sqrt{2/3}x} \right)^2 , \ \hat{\mu} \equiv \frac{\mu}{\sqrt{6\tau_0}}$$

Hybrid Inflation in No-scale Supergravity ¹

A renormalizable superpotential with non-exact R-symmetry, and no-scale structure for the Kähler potential

$$\begin{split} W &= \kappa \, S \left(\phi_1 \, \phi_2 - M^2 \right) - \frac{\mu}{2} S^2 + \frac{\lambda}{3} S^3 \\ K &= -3 \log \left[T + \bar{T} - \frac{|S|^2}{3} - \frac{|\phi_1|^2}{3} - \frac{|\phi_2|^2}{3} \right] \end{split}$$

• D-flat direction $|\phi_1| = |\phi_2|$, and SUSY vacuum

$$\langle S \rangle = 0 \& \langle \phi_1 \phi_2 \rangle = M^2$$

• During inflation $\phi_1 = \phi_2 = 0$, and the effective potential

$$V_{inf} = \frac{1}{\left(2\tau_0 - \frac{|S|^2}{3}\right)^2} \left|\kappa M^2 + \mu S - \lambda S^2\right|^2,$$

¹A.M. (2021)

The squared mass matrix contains a mixing between the inflaton and the waterfall fields

$$\mathcal{M}^{2} = \begin{pmatrix} \frac{27\tau_{0}^{2}(2M^{2}\kappa^{2} + \mu^{2})}{2(3\tau_{0} - M^{2})^{3}} & -\frac{27\sqrt{6}M\tau_{0}^{3/2}\kappa\mu}{2(3\tau_{0} - M^{2})^{7/2}} \\ -\frac{27\sqrt{6}M\tau_{0}^{3/2}\kappa\mu}{2(3\tau_{0} - M^{2})^{7/2}} & \frac{81\tau_{0}M^{2}\kappa^{2}}{(3\tau_{0} - M^{2})^{4}} \end{pmatrix}$$

Field redefinitions ⇒ canonical kinetic terms

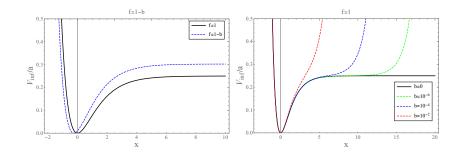
$$S = \sqrt{6\tau_0} \tanh\left(\frac{\chi}{\sqrt{3}}\right) \,, \qquad \quad \chi = \frac{x+i\,y}{\sqrt{2}}$$

$$V_{inf} = \frac{a}{4} \left((1+b) + (b-1) \cosh\left(\sqrt{\frac{2}{3}}x\right) + f \sinh\left(\sqrt{\frac{2}{3}}x\right) \right)^2$$

$$a = |3\lambda|^2$$
, $b = \frac{\kappa \hat{M}^2}{\lambda}$, $f = \frac{\hat{\mu}}{\lambda}$

ullet Asymptotically flat potential arises in the limit f=1-b

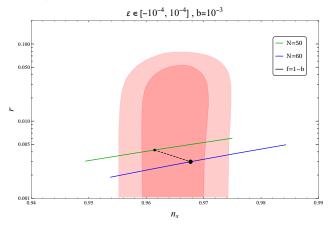
$$V_{inf} \bigg|_{f \to 1-b} = \frac{a}{4} \left((b+1) + (b-1)e^{-\sqrt{\frac{2}{3}}x} \right)^2$$



• Inflation observables : For f = 1 - b

$$ns \simeq 1 - \frac{2}{N} - \frac{3}{N^2}$$
, $r \simeq \frac{12}{N^2}$, $A_S \sim 2 \times 10^{-9}$ for $a \sim 10^{-10}$

• For $f = 1 - b + \varepsilon$



FGUT Model as a Realistic Example and Reheating

	$ar{f 5}_{H_u}$	5_{H_d}	$ar{f 5}_F$	10_{H}	$\overline{f 10}_H$	10_{F}	1_F	1_{S}
$U(1)_X$	+2	-2	-3	1	-1	1	5	0
Z_2	-	+	+	+	+	-	+	+

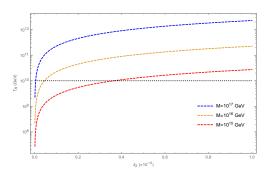
$$W = \kappa S \left(\mathbf{10}_{H}^{\alpha\beta} \ \overline{\mathbf{10}}_{H\alpha\beta} - M^{2} \right) - \frac{\mu}{2} S^{2} + \frac{\lambda}{3} S^{3} + \lambda_{1} \epsilon_{\alpha\beta\gamma\delta\zeta} \mathbf{10}_{H}^{\alpha\beta} \mathbf{10}_{H}^{\gamma\delta} \mathbf{5}_{H}^{\zeta}$$
$$+ Y_{u} \, \overline{\mathbf{5}}_{H_{u}\alpha} \, \mathbf{10}_{F}^{\alpha\beta} \, \overline{\mathbf{5}}_{F\beta} + Y_{d} \, \epsilon_{\alpha\beta\gamma\delta\zeta} \, \mathbf{10}_{F}^{\alpha\beta} \, \mathbf{10}_{F}^{\gamma\delta} \, \mathbf{5}_{H_{d}}^{\zeta} + Y_{e} \, \mathbf{5}_{H_{d}}^{\lambda} \, \overline{\mathbf{5}}_{F\lambda} \, \mathbf{1}_{F}$$

• FGUT symmetry allows the term $\frac{\lambda_2}{M_B} \mathbf{10}_F \mathbf{10}_F \overline{\mathbf{10}}_H \overline{\mathbf{10}}_H$, that gives rise to right-handed neutrino masses and allows for decay channels for the inflaton to right-handed neutrinos and sneutrinos.

Reheating and neutrino masses in FGUT model

$$\mathcal{L}_{int} = \frac{\lambda_2 M}{M_P} \bar{\nu}_H^c \nu^c \nu^c + \left(\frac{2\kappa \lambda_2 M^2}{M_P} S \tilde{\nu}^{c*} \tilde{\nu}^{c*} + h.c. \right)$$
$$T_R \approx \frac{(8\pi)^{1/4}}{7} (\Gamma M_p)^{1/2},$$

 \bullet $M\sim 10^{15}~{\rm GeV}$ and $\lambda_2 \sim 0.35 \times 10^{-4}$. $M_{\nu c} < 10^8 \text{ GeV}.$ $\sin \beta \sim \mathcal{O}(1)$ and $Y_u < 10^{-3} \Rightarrow$ $m_{\nu} = \frac{Y_u^2 v^2 \sin^2 \beta}{M_c} \sim 0.1$



Tribrid Inflation Model in No-scale Supergravity²

	S_1	S_2	ϕ_1	ϕ_2	S	N
$U(1)_{B-L}$	1	-1	2	-2	0	-1
R	1	1	0	0	2	-1
Z_3	ω^2	ω	ω	ω^2	1	ω

$$W_{inf} = \kappa_1 S \left(\phi_1 \phi_2 - \mu M_P \right) + \kappa_2 S_1 S_2 \left(\frac{\phi_1 \phi_2}{M_P} - \mu \right) + \frac{\lambda_1}{M_P} (S_1 S_2)^2 + \frac{\lambda_2}{M_P} S^2 S_1 S_2$$

$$K = -3M_P^2 \log \left[\frac{T + \overline{T}}{M_P} - \frac{|S|^2}{3M_P^2} - \frac{|S_1|^2}{3M_P^2} - \frac{|S_2|^2}{3M_P^2} - \frac{|\phi_1|^2}{3M_P^2} - \frac{|\phi_2|^2}{3M_P^2} \right]$$

- $S_{1,2}$ contains the inflaton
- $S_{1,2}$ contribute to inverse seesaw mechanism

- ullet $\phi_{1,2}$ are the waterfall fields
- S is a driving field and flattens the inflation potential

²A.M. (2021)

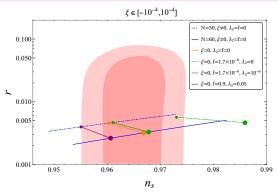
Tribrid Inflation Model in No-scale Supergravity

$$V = A \cosh^4 \left(\frac{x}{\sqrt{6}}\right) \left[B^2 \tanh^6 \left(\frac{x}{\sqrt{6}}\right) - 2B \tanh^4 \left(\frac{x}{\sqrt{6}}\right) + \tanh^2 \left(\frac{x}{\sqrt{6}}\right) + f\right]$$

$$A = \frac{3\mu^{2}\kappa_{2}^{2}}{2\tau_{0}M_{P}}, \qquad B = \frac{6\lambda_{1}\tau_{0}}{\kappa_{2}\mu}, \qquad f = \frac{\kappa_{1}^{2}M_{P}}{6\kappa_{2}^{2}\tau_{0}}$$

Observables

λ_2	f	μ	κ_1	κ_2	λ_1	$ au_0$	M
$0 - 10^{-6}$	1.7×10^{-6}	2.8×10^{-6} 2.8×10^{-5}	10^{-3}	0.9	4.3×10^{-6}		1.6×10^{-3}
		2.8×10^{-5}	10^{-2}		4.3×10^{-7}	10	5.3×10^{-3}
0.05 - 0.9	0.9	4×10^{-6}		0.9	3×10^{-6}	0.2	2×10^{-3}
		3.6×10^{-3}	0.1	0.01	3×10^{-7}	20	6×10^{-2}



SUSY breaking, Reheating and Neutrino Masses

$$W_{\nu} = Y_{\nu} L H_u N + Y_S \, S \, N \, S_1 + \frac{\lambda_3}{M_P} \, S \, \phi_1 \, N \, S_2 + \left[\frac{\lambda_2}{M_P} S^2 + \kappa_2 \left(\frac{\phi_1 \phi_2}{M_P} - \mu \right) \right] S_1 S_2$$

SUSY breaking effects results in shifts in the minima

$$\langle S \rangle \simeq \frac{m_{3/2}}{\kappa_1} \ , \qquad \quad \langle |\phi_1| \rangle = \langle |\phi_2| \rangle \simeq M \left(1 - \frac{m_{3/2}^2}{\kappa_1^2 M^2} \right)$$

Neutrino masses Lagrangian

$$\mathcal{L}_{\nu} = m_D \,\bar{\nu}_L \, N^c + M_{R_1} \,\bar{N}^c \, S_1^c + M_{R_2} \,\bar{N}^c \, S_2^c + \mu_S \,\bar{S}_1^{\ c} \, S_2^c + h.c.$$

$$m_D = Y_{\nu} \, v \sin(\beta) \,, \qquad M_{R_1} = \frac{Y_S \, m_{3/2}}{\kappa_1} \,, \qquad M_{R_2} = \frac{\lambda_3 \, m_{3/2} \, M}{\kappa_1 \, M_P} \,,$$

$$\mu_S = \frac{\lambda_2}{M_P} \, \langle S \rangle^2 + \frac{\kappa_2}{M_P} \, \left[\langle \phi_1 \phi_2 \rangle - M^2 \right]$$

$$= \frac{m_{3/2}^2}{\kappa_1^2 \, M_P} \, \left[\lambda_2 - \kappa_2 + \frac{\kappa_2 \, m_{3/2}^2}{2\kappa_1^2 \, M^2} \right]$$

SUSY breaking, Reheating and Neutrino Masses

$$M_{\nu} = \left(\begin{array}{cccc} 0 & m_D & 0 & 0 \\ m_D & 0 & M_{R_1} & M_{R_2} \\ 0 & M_{R_1} & 0 & \mu_S \\ 0 & M_{R_2} & \mu_S & 0 \end{array} \right)$$

$$\begin{array}{lcl} m_{\nu_l} & \simeq & \frac{m_D^2 \, \mu_S}{2 M_{R_1} M_{R_2}} \,, \\ \\ m_{\nu_1} & \simeq & \frac{\mu_S \left(-\frac{m_D^2}{2 M_{R_2}} - 2 M_{R_2} \right)}{M_{R_1}} \, \sim \mu_S \,, \\ \\ m_{\nu_{2,3}} & \simeq & \pm \left(M_{R_1} + \frac{m_D^2 + M_{R_2}^2}{2 M_{R_1}} \right) + \frac{M_{R_2} \mu_S}{M_{R_1}} \sim \pm \left(M_{R_1} + M_{R_2} \right) \end{array}$$

$m_{3/2}$	λ_2	λ_3	κ_1	κ_2	$Y_{ u}$	Y_S	$ m_{ u_1} $	$ m_{ u_{2,3}} $
10^{3}	0.008	0.002	10^{-5}	10^{-3}	0.05	3×10^{-5}	3×10^{-5}	4.4×10^{3}
0.1	0.9	0.4	10^{-7}	0.1	0.9	0.01	2.1×10^{-7}	1.06×10^4
10^{5}	0.1	0.01	0.01	0.01	0.5	0.0032	6.6×10^{-7}	3.21×10^4

SUSY breaking, Reheating and Neutrino Masses

