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Point 8

Monopole & Exotics Detector At LHC

LHC’s first dedicated search experiment
(approved 2010)



MoEDAL physics goals
• MoEDAL has pioneered the search 

for long-lived particles
▫ complementary to ATLAS, CMS and 

LHCb
• MoEDAL is optimised for the 

detection of (meta)stable highly 
ionising particles
▫ high charges (high z) 
⇒ electric and/or magnetic charges
▫ slow moving (low β) ⇒ massive
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MoEDAL physics program
Int. J. Mod. Phys. A29 (2014) 1430050 

Highly 
ionising
particle

s

Magnetic 
monopoles

KK extra 
dimensions

D-matter

Quirks

Q-balls

Black-hole 
remnants

Doubly 
charged 

Higgs

SUSY
R-hadrons  
sleptons

ATLAS/CMS talks by Jeff Dandoy, Jackson Burzynski
on Monday and Leonardo Rossi on Friday

http://dx.doi.org/10.1142/S0217751X14300506


Baseline MoEDAL detector

• Mostly passive detectors; no trigger; no readout
• Permanent physical record of new physics
• No SM physics backgrounds

DETECTOR SYSTEMS
① Nuclear Track Detectors (NTD)

② Monopole Trapping detector 
(MMT) – aluminum bars

③ TimePix radiation background 
monitor

V.A. Mitsou

4

SUSY 2022



Baseline MoEDAL detector

• Mostly passive detectors; no trigger; no readout
• Permanent physical record of new physics
• No SM physics backgrounds

DETECTOR SYSTEMS
① Nuclear Track Detectors (NTD)

② Monopole Trapping detector 
(MMT) – aluminum bars

③ TimePix radiation background 
monitor

V.A. Mitsou

5

SUSY 2022

More on NTD in VAM’s 
talk on Tuesday



MMTs:deployment
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2012
11 boxes each containing 18 Al rods of 
60 cm length and 2.54 cm diameter (160 kg)

2015-2018
• Installed in forward region under 

beam pipe & in sides A & C
• Approximately 800 kg of aluminium
• Total 2400 aluminum bars



MMT:scanning
• Monopoles can bind to nuclei and get trapped
• MMTs analysed in superconducAng quantum 

interference device (SQUID) at ETH Zurich
• Persistent current: difference between resulAng 

current aKer and before 
• Outliers are scanned several 6mes further
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Calibration:
Typical sample & 

pseudo-monopole 
curves

SQUID analysis – Persistent current after 
first two passages for all samples
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https://doi.org/10.1103/PhysRevLett.123.021802


Magnetic:monopoles:in:a:nutshell
• Why? Because they symmetrise Maxwell’s equaAons
▫ electric ↔ magneGc charge duality
• Single magneAc charge (Dirac charge): gD = 68.5e 
▫ higher charges are integer mulGples of Dirac charge:  

g = ngD,   n = 1, 2, ... 
▫ if carries electric charge as well, is called Dyon
• Photon-monopole coupling constant
▫ large:  g/Ћc ~ 20 (precise value depends on units)

• Dirac monopole is a point-like parAcle; GUT monopoles are extended objects 
▫ producGon of composite monopoles exponenGally suppressed by e−4/α

• Monopole spin is not determined by theory ➙ free parameter
• Monopole mass not theoreAcally fixed ➙ free parameter
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For a review on monopole theory and searches: 
Mavromatos & VAM, Int.J.Mod.Phys.A 35 (2020) 2030012

https://doi.org/10.1142/S0217751X20300124


Results
• 2016 – First monopole results @ 8 TeV ☛ CERN Press Release

JHEP  1608 (2016) 067 [arXiv:1604.06645] 

• 2017 – First monopole results @ 13 TeV Phys.Rev.Lett. 118 (2017) 061801 [arXiv:1611.06817]

• 2018 – MMT results Phys.Lett.B 782 (2018) 510–516 [arXiv:1712.09849] 

▫ spin-1 monopoles ← FIRST in colliders
▫ β-dependent coupling

• 2019 – MMT results Phys.Rev.Lett. 123 (2019) 021802 [arXiv:1903.08491]

▫ photon fusion interpretation ← FIRST at LHC 

• 2020 – MMT search for Dyons ← FIRST in colliders
Phys.Rev.Lett. 126 (2021) 071801 [arXiv:2002.00861]

• 2021 – Schwinger thermal production ← FIRST 
Nature 602 (2022) 7895, 63 [arXiv:2106.11933] 

• 2021 – NTD & MMT combination ← FIRST NTD analysis arXiv:2112.05806

▫ First limits in highly electrically charged objects
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VAM’s talk on 
Tuesday 

https://home.cern/news/press-release/cern/lhc-moedal-experiment-publishes-its-first-paper-its-search-magnetic
http://dx.doi.org/10.1007/JHEP08%282016%29067
http://arxiv.org/abs/arXiv:1604.06645
https://doi.org/10.1103/PhysRevLett.118.061801
http://arxiv.org/abs/arXiv:1611.06817
https://doi.org/10.1016/j.physletb.2018.05.069
https://arxiv.org/abs/1712.09849
https://doi.org/10.1103/PhysRevLett.123.021802
https://arxiv.org/abs/1903.08491
https://doi.org/10.1103/PhysRevLett.126.071801
https://arxiv.org/abs/2002.00861
https://doi.org/10.1038/s41586-021-04298-1
https://arxiv.org/abs/2106.11933
https://arxiv.org/abs/2112.05806


Magnetic monopole limits
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MoEDAL, JHEP  1608 (2016) 067, 
PRL 118 (2017) 061801, 

PLB  782 (2018) 510, 
PRL 123 (2019) 021802, 
PRL 126 (2021) 071801

Mass limits extracted with Feynman-like diagrams that ignore 
non-perturba2vity of large monopole-photon coupling

• NovelAes in monopole models: β-dependent
coupling, spin-1 monopoles, γγ fusion

• MoEDAL set world-best collider limits for |g| > 2 gD
• Overall, MoEDAL achieved extended reach by 

combining Drell-Yan and γ-fusion mechanisms

Drell-Yan photon fusion

≪
See also, Baines, Mavromatos, VAM,  Pinfold, 

Santra, Eur.Phys.J.C 78 (2018) 966

http://dx.doi.org/10.1007/JHEP08%282016%29067
https://doi.org/10.1103/PhysRevLett.118.061801
https://doi.org/10.1016/j.physletb.2018.05.069
https://doi.org/10.1103/PhysRevLett.123.021802
https://doi.org/10.1103/PhysRevLett.126.071801
https://doi.org/10.1140/epjc/s10052-018-6440-6


Monopoles via thermal Schwinger mechanism 

Advantages over DY & γγ-fusion producAon
▫ cross-secGon calculaGon using semiclassical techniques ⇒ does not suffer from non-

perturbaGve nature of coupling 
▫ no exponenGal suppression e-4/α for finite-sized monopoles
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Gould, Ho, Rajantie, PRD 100, 015041 (2019), arXiv:2103.14454
Ho & Rajantie, PRD 101, 055003 (2020), PRD 103 (2021) 11, 115033

Monopole-antimonopole
pairs may be produced in 
strong magnetic fields
present in heavy-ion 
collisions 

https://doi.org/10.1103/PhysRevD.100.015041
https://arxiv.org/abs/2103.14454
https://doi.org/10.1103/PhysRevD.101.055003
https://doi.org/10.1103/PhysRevD.103.115033


Schwinger production results
• Exposure of MMTs in 0.235 nb-1 of Pb-Pb heavy-ion collisions at 5.02 TeV per nucleon
• Limits on monopoles of 1 – 3 gD and masses up to 75 GeV
• First limits from collider experiment based on non-perturbative calculation of monopole 

production cross section
• First direct search sensitive to monopoles that are not point-like
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Monopole mass reach
appears to be 20−30 
times lower than current
bounds from ATLAS and 
MoEDAL, however, this
cross-section calculation
is theoretically sound

MoEDAL, 
Nature 602 (2022) 7895, 63-67

https://doi.org/10.1038/s41586-021-04298-1
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Pinfold, 
Phil.Trans.Roy.Soc.Lond.A 377 (2019) 20190382

MAPP – MoEDAL Apparatus for Penetrating Particles

MAPP-LLP: sensitive to very long-lived 
weakly interacting neutral particles 
through visible decay products ➜
displaced vertices     

IP

MAPP-mQP: sensiGve to low ionisaGon 
induced by millicharged parGcles 
(mCPs), i.e. parGcles with charges ≪ 1e

IP

• Phase-1 approved by CERN Research Board on Dec 1st 2021 
• Phase-1 for Run-3 (2022–2025):  MAPP-mQP installation in UA83 is underway 
▫ start taking data in 2023 

• Phase-2 HL-LHC (2029 –): Reinstall Phase-1 in UA83 and add MAPP-LLP in UGC1

MoEDAL-MAPP flythrough: 
http://www.physixel.com/JLP_MAPP/MAPP_FlyOver1.mp4

https://doi.org/10.1098/rsta.2019.0382
http://www.physixel.com/JLP_MAPP/MAPP_FlyOver1.mp4


MAPP location
V.A. MitsouSUSY 2022
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LLP
UGC1

mQP 
UA83

§ At  forward region 
w.r.t. beam axis

§ Protected by ~100 m 
of rock overburden



MAPP-mQP Phase-1:detector:concept

• 400 scintillator bars (10×10×75 cm3) in 4 sections readout by PMTs
• Protected by a hermetic VETO counter system 

V.A. MitsouSUSY 2022
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Electronics

Flame Shield

VETO layer
(ScinGllator)

Main scinGllator
Bar detector UA83

Prototype mQP in 
2017 in UGC1 gallery



MAPP-mQP Phase-1 installation
V.A. MitsouSUSY 2022
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UA83



mQP &:millicharged:particles:(mCPs)

Run-3 sensitivity for 
dark-photon decays to 
mCP dark fermions ψ

V.A. MitsouSUSY 2022
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Dark photon decays to mCPs Heavy neutrino with large EDM

MAPP-mQP

Limits that MAPP can place on heavy 
neutrino producGon with large EDM at 
Run-3 and HL-LHC at IP8
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See also Pran Nath’s talk on Saturday

https://doi.org/10.1016/j.physletb.2020.135204
https://doi.org/10.7939/r3-g8yh-hv16


Phase-2:::MAPP-2:for:HL-LHC:

• The UGC1 gallery will be prepared during Long Shutdown 3 prior to HL-LHC
• MAPP-2 detector extends to the full length of the UGC1 gallery
• Detector technology: large scintillator tiles with x-y wavelength shifting optical fibre readout with 

resolution ≲ 1cm/measurement
• Tracking  detectors formed by 3 or 4 hermetic containers – one within the other – lining UGC1 walls 

V.A. MitsouSUSY 2022
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MAPP-LLP – dark matter & heavy neutrinos

Dark Higgs φ mixes with SM H0 (mixing angle 
θ ≪ 1), leading to exotic B → Xsφ decays with 
φ → ℓ+ℓ−

V.A. MitsouSUSY 2022
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adopted from  Phys.Rev.D 97 (2018) 015023

Dark Higgs scenario

adopted from  Phys.Rev.D 100 (2019) 035005

Heavy neutrino via Z’ production

Pair production of RH neutrinos from the decay 
of a Z´ boson in the gauged B-L model 

https://doi.org/10.1103/PhysRevD.97.015023
https://doi.org/10.1103/PhysRevD.100.035005


Summary & outlook
• MoEDAL pioneered searches for long-lived particles
• Exciting results so far
▫ sole contender in high magnetic charges
▫ sole dyon search in accelerator experiment
▫ first search for monopoles produced via Schwinger mechanism
▫ entered the arena of electrically charged particles

• Upcoming results
▫ CMS beam pipe analysis ➜ constrain very high magnetic charges
▫ Second NTD analysis ➜ improved sensitivity to electric charges

• Future perspectives
▫ MoEDAL baseline redeployed for Run-3 and planned to operate during HL-LHC
▫ MAPP will extend reach to millicharged particles, neutral long-lived particles 
➜ dark sectors, neutrino portals, SUSY, ...

V.A. MitsouSUSY 2022
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MoEDAL web page: https://moedal.web.cern.ch/

https://moedal.web.cern.ch/
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3⃣ TimePix radiation:monitor
• Timepix chips used to measure online the radiation field  

and monitor spallation product background
• Essentially act as little electronic “bubble-chambers”
• The only active element in MoEDAL

V.A. MitsouSUSY 2022
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• 256×256 pixel with 55 μm pitch
• Time-of-interaction precision 1.56 ns
• 3D track reconstruction 
• Energy deposition measured via time-

over-threshold
• Particle ID through dE/dx  

Tracks accumulated during 1s in MoEDAL
during Pb-Pb run MoEDAL, PoS ICHEP2020 (2021) 720

330 GeV Pb-ion measured at the SPS

https://doi.org/10.22323/1.390.0720


Dyon search
• Dyons possess both electric and magnetic charge
• MMT scanning searching for captured dyons
▫ 6.46 fb-1 of 13 TeV pp collisions during 2015-2018
• Analysis considered
▫ dyons of spin 0, ½, 1
▫ Drell-Yan production
• Excluded cross sections as 

low as 30 fb 
• Mass limits 750-1910 GeV 

were set for dyons with 
▫ up to 5 Dirac magnetic charges (5gD)
▫ electric charge 1e – 200e

V.A. MitsouSUSY 2022
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MoEDAL, Phys.Rev.Lett. 126 (2021) 071801 [arXiv:2002.00861]

First explicit accelerator search 

for direct dyon production

https://doi.org/10.1103/PhysRevLett.126.071801
https://arxiv.org/abs/2002.00861


CMS:beam:pipe
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Beam pipe
▫ most directly exposed piece of material
▫ covers very high magneGc charges

• 1990’s: materials from CDF, D0 (Tevatron) and 
H1 (HERA) subject to SQUID scans for trapped 
monopoles
• 2012: first pieces of CMS beam pipe tested 

[EPJC72 (2012) 2212]; far from collision point
• Feb 2019: CMS officially transfers ownership of the Run-1 

CMS beam pipe to MoEDAL

Beam pipe scanned with SQUID at ETH Zurich.
Results to be released soon 

https://cerncourier.com/cms-beam-pipe-to-be-mined-for-monopoles/
https://doi.org/10.1140/epjc/s10052-012-1985-2
https://doi.org/10.1140/epjc/s10052-012-2212-x


MoEDAL physics goals
• MoEDAL has pioneered the search for long-lived particles
▫ complementary to ATLAS, CMS and LHCb
• MoEDAL optimised for detection of meta-stable highly ionising particles (HIPs)
➜ high charges (high z) ⇒ electric and/or magnetic charges
➜ slow moving (low β) ⇒ massive particles

V.A. MitsouSUSY 2022
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MoEDAL physics program, Int. J. Mod. Phys. A29 (2014) 1430050 

Bethe-Bloch formula

Figure of merit for large 
energy loss: z/β

MoEDAL NTDs have a 
threshold as low as z/β = 5

http://dx.doi.org/10.1142/S0217751X14300506


HECOs summary
• MoEDAL set limits on 

HECOs with electric 
charges in the range 
15e – 175e and masses 
from 110 – 1020 GeV
• In comparison, ATLAS has 

set limits on HECOs of 
20e – 100e
[PRL 124, 031802 (2020)]
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https://doi.org/10.1103/PhysRevLett.124.031802


MAPP-LLP – physics potential
V.A. MitsouSUSY 2022

29

De Vries, Dreiner, Günther, Wang, Zhou, JHEP 03 (2021) 148

Sterile neutrinos

Minimal scenario: interactions purely mediated by 
W- and Z-bosons via active-sterile neutrino mixing
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R-parity violating SUSY

RPV couplings

https://doi.org/10.1007/JHEP03(2021)148
https://doi.org/10.1103/PhysRevD.103.075013


MAPP, MMT and extremely long lived particles
• Aler exposure and SQUID scan, MMTs to be monitored 

for decaying electrically charged parGcles possibly 
trapped in their volume
▫ MMTs to be placed under MAPP
▫ sensiAve to charged parAcles (e, μ, hadrons) and photons

• EsGmated probed lifeGmes ~10 yrs

V.A. MitsouSUSY 2022
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• SuperWIMP model for cold dark 
maQer, WIMP → SM + SWIMP
• SuperWIMP parAcles may explain 

the observed lithium under-
abundance 
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https://doi.org/10.3390/universe5020047
https://doi.org/10.1103/PhysRevD.68.063504

