

Multiboson production in CMS

The XXIX International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2022)

Work supported by DOE Award: DE-SC0010103

Pedro J. Fernández Manteca

Rice University

27th June - 2nd July 2022

Introduction

 Many CMS analyses have targeted Multiboson final states during the Run2 data-taking (2016-2018)

Motivation:

- Measurements of Multiboson final states provide excellent tests of the electroweak sector
- Any deviation of the Multiboson production cross sections or kinematic distributions from the SM predictions may be an indication of anomalous couplings or the existence of new particles → Need precise measurements as well as reliable and accurate theoretical predictions for these processes
- Multiboson final states represent a significant background to the measurements of the Higgs boson
- Latest published Multiboson results in the last ~couple of years by CMS:

```
WW (CMS-SMP-18-004) WZ (CMS-SMP-20-014) Diboson xsecs at \sqrt{s} = 5 TeV (CMS-SMP-20-012) WY differential (CMS-SMP-20-005) WW DPS (CMS-SMP-21-013) pWWp pZZp with PPS (CMS-SMP-21-014)
```

VBS Wg (CMS-SMP-21-011)
VBS WW OS (CMS-SMP-21-001)
EW ZY+2jets (CMS-SMP-20-016)
WW VBS SS dilepton (CMS-SMP-20-006)
ZZ VBS 4I+2j (CMS-SMP-20-001)
WV VBS semileptonic (CMS-SMP-20-013)

Covered in this talk

Not covered: dedicated talk on Friday

WW: strategy

 The Signal Region definition relies mainly on a set of discrete requirements on kinematic variables and on a multivariate analysis tool to suppress Drell-Yan background in same-flavour channel **Target signature:** two opposite charged isolated leptons, and large transverse missing energy (MET) from the neutrinos

 W^+

Signal Region definition:

$$projected \ TrkE_{T}^{miss} = \begin{cases} TrkE_{T}^{miss} & \Delta\phi_{\min}(leptons, TrkE_{T}^{miss}) \geq \pi/2 \\ TrkE_{T}^{miss} \sin \Delta\phi_{\min} & \Delta\phi_{\min}(leptons, TrkE_{T}^{miss}) \leq \pi/2 \end{cases}$$

$$projected \ E_{T}^{miss} = \begin{cases} E_{T}^{miss} & \Delta\phi_{\min}(leptons, E_{T}^{miss}) \geq \pi/2 \\ E_{T}^{miss} \sin \Delta\phi_{\min} & \Delta\phi_{\min}(leptons, E_{T}^{miss}) \leq \pi/2 \end{cases}$$

WW: results

- The signal strength is extracted by fitting the predicted yields to the observed events (1-bin distributions). Information from the control regions is included in the fit
 - Fit: 4 Signal Regions, 4 Top Control Regions (2 flavour categories x 2 njets categories). Top normalization is measured

Inclusive cross-section:

Theoretical prediction: $\sigma_{tot}^{NNLO} = 118.8 \pm 3.6 \text{ pb}$

Categ	ory	Signal strength	Cross section [pb]
0-jet	DF	1.054 ± 0.083	125.2 ± 9.9
0-jet	SF	1.01 ± 0.16	120 \pm 19
1-jet	DF	0.93 ± 0.12	110 ± 15
1-jet	SF	0.76 ± 0.20	89 ± 24
0-jet & 1-jet	DF	1.027 ± 0.071	122.0 ± 8.4
0-jet & 1-jet	SF	0.89 ± 0.16	106 ± 19
0-jet & 1-jet	DF & SF	0.990 ± 0.057	117.6 ± 6.8

$$\sigma_{tot} = 117.6 \pm 1.4 \text{ (stat)} \pm 5.5 \text{ (syst)} \pm 1.9 \text{ (theo)} \pm 3.2 \text{ (lumi) pb}$$

= 117.6 ± 6.8 pb

Fiducial cross-section:

Fiducial region definition at gen level: two dressed electrons or muons in the event with $p_T > 20$ GeV and $|\eta| < 2.5$, $m_{\ell\ell} > 20$ GeV, $p_{T\ell\ell} > 30$ GeV and MET > 20 GeV

Theoretical prediction: $\sigma_{fid}^{NNLO} = 1.531 \pm 0.043 \text{ pb}$

$$\sigma_{fid}^{tot} = 1.529 \pm 0.0020 \text{ (stat)} \pm 0.069 \text{ (syst)}$$

 $\pm 0.028 \text{ (theo)} \pm 0.041 \text{ (lumi)} \text{ pb} = 1.529 \pm 0.087 \text{ pb}$

Differential cross-sections:

WZ: strategy

 Produced only via qq annihilation → sensitive to charge asymmetry measurements

Baseline selection:

- 3 isolated leptons
- The 2 OSSF leptons with closest $m_{\ell\ell}$ to m_Z are tagged as "Z leptons" (Z1, Z2)
- Remaining lepton is "W Lepton"
- $p_{T, Z_1} > 25 \text{ GeV}$, $p_{T,Z_2} > 10 \text{ GeV}$, $p_{T,W} > 25 \text{ GeV}$
- mll > 4 GeV
- On top of the baseline selection, a SR and CRs are defined to estimate the main backgrounds:

Target signature: three isolated leptons with an OSSF pair, and MET

Region	N_ℓ	$p_{\mathrm{T}}\{\ell_{\mathrm{Z1}},\ell_{\mathrm{Z2}},\ell_{\mathrm{W}},\ell_{\mathrm{4}}\}$	$N_{\rm OSSF}$	$ M(\ell_{Z1},\ell_{Z2})-m_Z $	$p_{ m T}^{ m miss}$	$N_{ m btag}$	$\min(M(\ell\ell'))$	$M(\ell_{Z1},\ell_{Z2},\ell_{W})$
SR	=3	>{25,10,25,—} GeV	≥1	<15 GeV	>30 GeV	=0	>4 GeV	>100 GeV
CR-ZZ	=4	>{25, 10, 25, 10} GeV	≥1	<15 GeV		=0	>4 GeV	>100 GeV
CR - $t\bar{t}Z$	=3	$> \{25, 10, 25, -\}$ GeV	≥1	<15 GeV	>30 GeV	>0	>4 GeV	>100 GeV
CR-conv	=3	>{25, 10, 25, —} GeV	≥1	_	\leq 30 GeV	=0	>4 GeV	<100 GeV

WZ: results

ML fit: flavour distribution in SR + ZZ CR + b-tagged ttZ - tZq CR + XY CR. Background normalizations are measured

Inclusive cross-section & charge asymmetry:

$$\sigma_{tot} = 298.9 \pm 4.8 \text{ (stat)} \pm 7.7 \text{ (syst)} \pm 5.4 \text{ (lumi)} \pm 2.7 \text{ (theo) fb}$$

Theoretical prediction: $\sigma_{tot}^{NNLO \times NLO EW} = 298.1 \pm 6.6 \text{ pb}$

· Fiducial cross-section:

Fiducial region definition: three dressed electrons or muons in the event with at least one OSSF pair. $p_{T\ell Z1} > 25$ GeV, $p_{T\ell Z2} > 10$ GeV, $p_{T\ell W} > 25$ GeV, $|\eta| < 2.5$, $60 < m_{\ell Z1,\ell Z2} < 120$ GeV, $m_{\ell Z1,\ell Z2,\ell W} > 100$ GeV

$$\sigma_{fid} = 50.6 \pm 0.8 \text{ (stat)} \pm 1.4 \text{ (syst)} \pm 1.1 \text{(lumi)} \pm 0.5 \text{ (theo)} \text{ pb}$$

Theoretical prediction: $\sigma_{fid}^{NNLO \times NLO EW} = 50.7 \pm 1.1 \text{ pb}$

Differential cross-sections:

WY differential: strategy

Target signature: one isolated lepton, one isolated photon, and MET

Event selection:

- pTe > 35 GeV / pTµ > 30 GeV / pTY > 30 GeV
- $\Delta R(\ell, \Upsilon) > 0.7$
- MET > 40 GeV
- Vetoed events with m_{ℓ,Y} close to mZ
- Vetoed additional leptons & photons
- Two flavour categories: eY, μΥ
- Main backgrounds: W+jets (where a jets is misidentified as a photon, i.e., non-prompt photon) and events with a prompt photon but a nonprompt or misidentified lepton
 - Estimated from data using sidebands of the SR based on lepton and photon isolation requirements

WY differential: results

ML fit:

Fit to the RECO observables in each year for each electron and muon channels (6 categories: 2 flavour channels x 3 years)

Fiducial region definition:

One gen dressed lepton and one photon in the event

- pT ℓ > 30 GeV, $|\eta\ell|$ < 2.5
- pTY > 30 GeV, $|\eta Y|$ < 2.5
- MET > 40 GeV
- $-\Delta R(\ell,\Upsilon) > 0.7$

Limits on Wilson coefficients

- In the electroweak sector of the SM, the first higher-dimensional operators containing only massive boson fields are dimension-6
 - EFT effects simulated with Madgraph5@NLO

Diboson xsecs at $\sqrt{s} = 5$ TeV: strategy

- **First measurements** of diboson production cross sections at this center-of-mass energy. Reduce the gap between Tevatron and LHC measurements
- Data collected in November 2017 under low pile-up conditions (302 pb)
- Leptonic decays of the W/Z bosons with at least two leptons in the final state
- Dedicated lepton identification selection criteria based on a multivariate selection method, designed to separate prompt leptons from fakes

Analysis Regions:

WW SR:

- Two OS leptons and DF channel
- $pT(\ell\ell) > 20 \text{ GeV}$
- $-\Delta \Phi(\ell,\ell) < 2.8$
- $mT(\ell, MET) > 20 \text{ GeV}$
- Vetoed jets

WZ SRs:

- Three leptons and Two SS leptons channels
- Additional kinematic cuts

ZZ SRs:

- Two and four leptons channels
- Additional kinematic cuts

Mean number of interactions per crossing				
Sou	ırce	Number of events		
	-	0 0 1 0 4 1 4 4		

Top quark $9.0 \pm 0.1 \pm 1.1$ WZ+ZZ $5.6 \pm 1.0 \pm 1.1$ $1.8 \pm 0.5 \pm 0.2$

Conversions $2.7 \pm 0.7 \pm 0.7$

Nonprompt ℓ 11.2 \pm 1.3 \pm 3.4 Background 30.3 \pm 1.9 \pm 3.9

WW signal $55.2 \pm 0.3 \pm 1.8$

Data 101

SR	Background	Signal	Data
WZ 3ℓ	$4.0 \pm 0.6 \pm 0.4$	$14.8 \pm 0.1 \pm 0.6$	12
WZ 2µss	$0.6 \pm 0.1 \pm 0.1$	$3.2 \pm 0.8 \pm 0.2$	4
$ZZ 4\ell$	$0.5\pm0.2\pm0.1$	$2.5\pm0.0\pm0.1$	3
$ZZ 2\ell 2\nu$	$4.8 \pm 0.3 \pm 0.7$	$3.8 \pm 0.0 \pm 0.2$	12

Diboson xsecs at √s = 5 TeV: results

ML fit: one for each SR, with a single free-floating parameter that corresponds to the normalization of the corresponding signal process

$$\sigma_{WW} = 37.0^{+5.5}_{-5.2}(\text{stat})^{+2.7}_{-2.6}(\text{syst}) = 37.0^{+6.2}_{-5.8} \text{ pb},$$

$$\sigma_{WZ} = 6.4^{+2.5}_{-2.1}(\text{stat})^{+0.5}_{-0.3}(\text{syst}) = 6.4^{+2.5}_{-2.1} \text{ pb},$$

$$\sigma_{ZZ} = 5.3^{+2.5}_{-2.1}(\text{stat})^{+0.5}_{-0.4}(\text{syst}) = 5.3^{+2.6}_{-2.1} \text{ pb},$$

WW DPS: strategy

- First observation of WW production from Double Parton Scattering (DPS) process
- Two hard parton-parton occur in a single proton-proton collision
- Allow to know better the internal structure of the colliding protons by performing correlation studies among the partons

Analysis Regions:

WW SS SR:

-Two SS leptons (e μ , $\mu\mu$), with pT ℓ > 25 (20) GeV

- MET > 15 GeV
- njets ≤ 1
- $m\ell\ell > 20 \text{ GeV}$
- bVeto and τh veto

WZ CR:

- Three leptons, where the mll of the OSSF lepton pair must be consistent with mZ

ZZ CR:

- Four leptons, where the mll of both OSSF pairs must be consistent with mZ

 Non-prompt lepton background is estimated from data using a sideband of the SR to estimate the fake rate

- To enhance the sensitivity, events in the SR are split into four lepton-flavor and charge categories
- Two BDTs are trained: signal vs WZ, signal vs non-prompt. Kinematic and angular variables from leptons and pTmiss are used as training variables
- PYTHIA8 and HERWIG MC generators are used to simulate the signal process. PYTHIA8 is taken as nominal, and the difference in acceptance is accounted as systematic uncertainty in the measurements

WW DPS: results

ML fit: 2D map of the scores of the two BDTs from SRs, m_{lll} from WZ CR, m_{lll} from ZZ CRs. WZ and ZZ normalizations are measured

Fiducial region definition: two dressed electrons or muons in the event, with the same pT, η , mll, pTll requirements as the SR

 $\sigma_{tot} = 0.16 \pm 0.02 \text{ (stat)} \pm 0.02 \text{ (syst)} \pm 0.02 \text{ (model) pb}$

In agreement with predictions from Pythia and dShower

Observed significance of the signal above the background only hypothesis of 6.20

YY → VV with forward protons: strategy

Search for anomalous YY→WW and YY→ZZ production, with reconstructed forward protons in PPS. Fully hadronic final states of W and Z into "fat" jets due to the large boost

Event selection:

Jets selection:

- Two "fat" jets with pT >
 200 GeV, m > 1126 GeV
 Δη(j1,j2) < 1.3
- Jets balanced in ϕ and pT - a = |1 - $\Delta \phi / \pi$ | < 0.01 - pTi1 / pTi2 < 1.3

W and Z selection:

 Masses of the jets are used to separate WW and ZZ final states:

$$\cos(\pi/4) \times m_{j1} + \sin(\pi/4) \times m_{j2}$$

= 117.8 GeV

Proton selection:

- ξ > 0.05 to avoid large radiation-induced near the beam

Proton-jet matching

- Main background: jets coming from one interaction, combined with unrelated protons from pileup interactions in the same BX
 - Estimated from data using sidebands regions (inverted dijet acoplanarity and/or dijet-proton matching) through the ABCD method

YY → **VV** with forward protons: results

ML fit: Fully ("region δ ") and partially ("region o") reconstructed events x 3 years x 2 SRs (WW and ZZ)

- Improved detectors in 2018 in PPS that allow to reconstruct more than 1 proton in each arm of the spectrometer per event. The one with with largest ξ is taken
 - Sensitivity mostly relies on 2018 data
- No significant excess is observed over the SM background prediction
- Limits are reinterpreted in terms of dimension-6 non-linear and dimension-8 AQGC. Limits on dimension-6 AQGC are 15-20x more stringent than the limits obtained in previous analysis performed in LHC Run1 (without proton tagging)

Summary

- Presented the latest CMS
 Mutiboson results in Run 2 era
- Good agreement with SM predictions so far
- The large amount of collected data is making possible to measure many rare processes predicted by the SM

- To have a complete overview of the latest Multiboson measurements at CMS, do not miss the VBS dedicated talk on Friday
- New data-taking era (Run 3) will start in August this year at √s = 13.6 TeV
 → new interesting results will come. Stay tuned!