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AdS/CFT: d-dim CFT ↔ d+1 AdS
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AdS/CFT: Quantum ↔ Geometry
Holographic entanglement entropy. Ryu-Takayanagi (RT)
2006; Hubeny-Rangamani-Takayanagi (HRT) 2007.

Complexity. Susskind et al. 2015
Quantum information

How are quantum degrees of freedom encoded in gravity?
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One hurdle: not many solvable quantum models of
holography

Sachdev–Ye–Kitaev model, SYK, 2015

Recently, Xu, Susskind, Swingle, 2020 proposed a new
class of models

Sparse SYK
Sparse model is more computationally efficient.
Numerical simulations, finite N
This talk: what is the sparse SYK, results
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Introduction
SYK and sparse SYK
Two coupled sparse SYK: traversable wormhole, revivals
Spectral form factor
Future directions



Sachdev-Ye-Kitaev model
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(all-to-all) SYK
Quantum mechanical system of N Majorana fermions χj with
all-to-all random interactions [Kitaev ’15]

H = iq/2
∑

1≤j1<...<jq≤N
Jj1...jq︸ ︷︷ ︸

Gaussian

χj1 . . .χjq︸ ︷︷ ︸
q-body

, 〈(Jj1...jq

)2〉 = (q−1)!J2

Nq−1

Analytically solvable at N →∞
Emergent conformal symmetry at low energies
Maximally chaotic λL = 2π

β
[Maldacena, Shenker, Stanford

1503.01409]
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SYK is a toy model of holography when βJ ≫ 1.
Jackiw-Teitelboim gravity.
Generalizations: charged, supersymmetric, etc.
Drawback: computational cost

number of terms ∼Nq

state of the art N = 52, 7 million terms
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Is there an SYK modification that retains all the
interesting physics but is more computationally efficient?

Sparse SYK
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Sparse SYK



Sparse SYK model
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Sparsity: Reduce number of terms in the Hamiltonian
summation while preserving original properties, e.g., chaotic
behavior
[Xu, Susskind, Su, Swingle 2008.02303]

Two ways of introducing sparsness
Random pruning
Hypergraphs
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Random prunning

H = iq/2
∑

1≤j1<...<jq≤N
Jj1...jqxj1...jqχ

j1 . . .χjq , 〈(Jj1...jq

)2〉 = (q−1)!J2

pNq−1

where

xijkl =
{

0 with probability 1−p

1with probability p
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Note that
Computational cost We want number of terms ∼ kN ,
where k ∼O(1) (

N

q

)
p = kN

For N = 52, k = 4, 208 terms. We can study higher N and
higher q.

Path integral formulation. Chaos. [Xu, Susskind, Su, Swingle

2008.02303]

How sparse can the model be ? Something new?
Useful language: hypergraphs



Hypergraphs
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Hypergraphs: Generalization of a graph where hyperedges can
connect more than two vertices
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Graph G = (V ,E ) Hypergraph H = (V ,E )

E = {e1,e2,e3....} E = {e1,e2,e3....}
|ei | = 2 |ei | > 2
pairs of vertices
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Sparse SYK as a random hypergraphs: Majorana fermions are
identified with vertices, and each interaction term correspond
to a hyperedge connecting q vertices (q-uniform).
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k quantifies the degree of sparsity in the Hamiltonian

k = p

N

(
N

q

)

⇒ Sparse Hamiltonian is a sum of exactly kN terms
Math results for random regular hypergraphs



Sparse SYK 18/50

We want sparse hypergraphs that are highly connected,
expanders

Study measures of hypergraph connectivity:
Algebraic hypergraph entropy
Vertex expansion
Spectral gap

=⇒
q = 4, k = 4
q = 8, k = 2
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Traversable wormholes and sparse SYK



Two coupled sparse SYK
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Eternal traversable wormhole with a global AdS2 geometry can
be realized by coupling two copies of SYK in the large N and
small coupling limit [Maldacena, Qi 1804.00491]

Solution can be obtained from JT gravity by adding
coupling between boundaries
[Gao, Jafferis, Wall 1608.05687]

Same physics can be derived from two coupled SYKs

H =HSYK
L +HSYK

R +Hint, Hint = iµ
N∑
j=1

χ
j
L
χ
j
R

→ Two coupled sparse SYKs
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Properties of the two coupled SYK model
[Maldacena, Qi 1804.00491]

H =HSYK
L +HSYK

R + iµ
N∑
j=1

χ
j
L
χ
j
R

Ground state |Ψ0〉 approximately a TFD state (for some β(µ))

Energy gap scaling. Derived in large N. Gravitational.

Egap ∼µ
1

2−2/q at weak coupling

Egap ∼µ at strong coupling



Energy gap
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q = 8 matches scaling expected from gravity for large N
and appropriate range of couplings
Finite N effects dominate at very small couplings µ



Revival dynamics phenomena
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1 Start with ground state |Ψ0〉 of the two coupled SYK
2 Create Majorana excitation in Right system

|Ψ(t = 0)〉 =χR |Ψ0〉

3 Excitation gets scrambled
4 Excitation reassembles and becomes localized in Left

system
|Ψ(t = trev)〉 =χL|Ψ0〉

5 Process is repeated with L↔R ⇒ ’Revival oscillations’
[Plugge, Lantagne-Hurtubise, Franz 2003.03914]

Gravity picture: Perturbation travels through the wormhole



Diagnostic of revivals
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Transmission amplitude Tab = 2|G>
ab|

G>
ab(t)=− iθ(t)

N

∑
j

〈χja(t)χjb(0)〉 =
(
G>
LL(t) G>

LR(t)
G>
RL(t) G>

RR(t)

)
|TLR(t)|2: Probability of recovering χj

L
at some time t after

inserting χj
R

at t = 0.
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[Plugge, Lantagne-Hurtubise and Franz, 2020]



Revivals in sparse SYK
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Sparse SYK with q = 8 is compatible for some range of
couplings and temperatures
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Tools:
Dynamite: a python library that makes use of PETSc and
SLEPc. Krylov subspace methods combined with massive
parallelization [Github:GregDMeyer/dynamite]

Texas Advanced Computing Center (TACC): Use of
computational resources from Stampede2 supercomputer
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Chaos and spectral form factor
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Quantum chaos:
Out of Time Order Correlators (OTOC)

C (t)=−〈[W (t),V (0)]2〉β, V ,W Hermitian operators

Basic intuition: How much an early perturbation V
affects the later measurement of W . Lyapunov exponent
Random Matrix Theory (RMT)
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Random matrix theory (RMT) provides an alternative
diagnostic of quantum chaos

Quantum chaos encoded in the statistical properties of
the spectrum
Spectra of quantum chaotic systems show the same
fluctuation properties as predicted by RMT
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Quantity sensitive to energy level statistics: Spectral Form
Factor

Z (β+ it,β− it)= 〈Tr(e−(β+it)H)Tr(e−(β−it)H)〉J

g(t,β)= Z (β+ it,β− it)

|Z (β)|2

gd(t,β)= Z (β+ it)Z (β− it)

|Z (β)|2
gc(t,β)= g(t,β)−gd(t,β)



Spectral form factor
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The late time behavior of the spectral form factor in the all-to-all SYK is
governed by Random Matrix Theory, just as expected from a chaotic
system.

Slope, dip, ramp, plateaux. [Cotler et. al.]

At early times

g(t,β)≈ |Z (β+iT )|2 gd

At late times

g(t,β)≈RMT gc
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• We can ask, how does the connected piece go at early times?
Connected contributions can dominate at early times []Berkooz
et. al, 2020]

=
∞∑

m1,m2=0
〈Tr(Hm1)Tr(Hm2)〉J

β
m1
1

m1!

β
m2
2

m2!
(−1)m1+m2

At early times,

gc ≈ ϵ

2
(β2+ t2)|∂Z (β

′)
∂β′ |2β′=β+it

ϵ=
(
N

q

)−1
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• In the all-to-all SYK we would need N > 60 to see this effect
tcrit ∼ tdip

→ Sparse SYK

Same analysis as Berkooz et. al. but with random
non-Gaussian couplings [R. Feng, G. Tian and D. Wei]

ϵ= 1
2

(
N

q

)−1

(
3
p
−1)



SFF in Sparse SYK
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Connected and disconnected parts, exchange of dominance. N =30, k =4q =4
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Spectral form factor k =4, N =30, q =4



Work in progress: OTOCs

Chaos and spectral form factor 38/50

Another way of diagnosing chaos: Out of TIme Order
Correlators (OTOCs)

C (t)= 〈[W (t),V (0]2〉 = 2−2F (t)

F (t)≡ 〈W (t)V (0)W (t)V (0)〉β
Goal: Lyapunov exponent λL ≤ 2π

β

dependence of λL with k?
λL is difficullt to extract numerically by direct fitting.
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Improved numerical method [Kobrin et. al] relies on OTOC
ansatz for large N

F (t)=C0+C1

(
eλt

N

)
+C2

(
eλt

N

)2

+ . . .

for t ≲ 1
λ
logN

F (t) obeys

N → rN , t → t+ 1
λ
log r .
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Future directions



Future directions
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Collisions behind the horizon [ Haehl and Zhao, 2105.12755,
2202.04661]

F6 ∼
〈W1W1OjOjW2W2〉

〈W1W1〉〈OjOj 〉〈W2W2〉
More on hypergraphs, operator growth.....
Double scaling limit, dS?
.....
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Thanks!



Adjancency matrix
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[A]ij =
{

# of hyperedges containing vertices i and j if i ̸= j

0 if i = j

1 2 3 4 5 6 7 8
k

0.0

0.2

0.4

0.6

0.8

1.0

/
m

ax

N = 24 q = 4
N = 24 q = 8
N = 40 q = 4
N = 40 q = 8
N = 24, 40 SYK

Second largest eigenvalue λ
→ Spectral gap

The spectral gap controls other
measures of hypergraph
expansion: algebraic entropy and
vertex expansion



45/50

Algebraic hypergraph entropy
Consider a hypergraph H = (V ,E ) and its adjancency
matrix A(H). Define

D = diag(d1,d2, ...,dN)), di =
∑
j∈V

Aij .

and

L(H)= 1
TrD

(D−A(H)) with eigenvalues νi

I (H)=∑
νi logνi
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Vertex expansion
Consider a subset S ⊂V . Define its neighborhood

N (S) := {i : ∃ j ∈ S such that {i , j } ⊆ e for some e ∈E }.

Lower bound on vertex expansion [Dumitriu and Zhu, 2019]

|N (S)|
|S | ≥

[
1− 1

2

(
1− λ2

r2(s−1)2

)]−1
.
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Level statistics
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Level spacing: s = Ei+1−Ei
∆ , ∆: mean level spacing

Level spacing distribution: P(s), probability to find
consecutive eigenvalues Ei ,Ei+1 at distance s

For quantum chaotic system:

PW (s)≃Aαs
αe−Bαs

α

, α=


1 GOE
2 GUE
4 GSE

(Wigner-surmise)

For integrable system:

PP(s)= e−s (Poisson)
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Green’s functions
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Gab(t)=
1
N

∑
j

2Re〈χja(t)χjb(0)〉, a,b = L,R .
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Numerical methods
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SYK maps to N/2-qubit system via Jordan-Wigner
transformation

χ2n =
(
n−1∏
j=1

σxj

)
σzn , χ2n−1 =

(
n−1∏
j=1

σxj

)
σ
y
n , {χi ,χj } = 2δij



Numerical methods
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Krylov subspace

Km = span{|ψ(t)〉,H |ψ(t)〉,H2|ψ(t)〉, . . . ,Hm−1|ψ(t)〉}

Get approximation for time evolution

e−iH∆t |ψ(t)〉 ≃Vme
−iVmHVm∆te1

Typicality:

〈χja(t)χjb(0)〉 =
1
Z

Tr
[
e−βHχja(t)χ

j
b
(0)

]
≃ 〈β|χja(t)χjb(0)|β〉

〈β|β〉

|β〉 = e−
β
2H |ψ〉, |ψ〉 random state
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