

SEARCHES FOR TOP SQUARKS AND GLUINOS WITH THE CMS DETECTOR

Andrea Trapote Fernández

(On behalf of the CMS Collaboration)

- SUSY2022 - 27 June - 2 July 2022

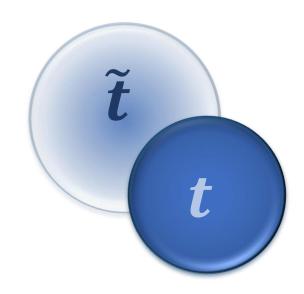
CMS SEARCH PROGRAM FOR GLUINOS / STOPS

CMS-PAS-SUS-21-007	Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy object tagging in proton-proton collisions at $\sqrt{s}=$ 13 TeV		March 2022
CMS-PAS-SUS-21-002	Search for electroweak production of supersymmetric particles in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum	Submitted to PLB	August 2021
CMS-PAS-SUS-20-004	Search for higgsinos in channels with two Higgs bosons and missing transverse momentum in proton-proton collisions at $\sqrt{s}=$ 13 TeV	JHEP 05 (2022) 014	July 2021
CMS-PAS-SUS-21-001	Search for direct pair production of supersymmetric partners to the $ au$ lepton in the all-hadronic final state at $\sqrt{s}=$ 13 TeV		July 2021
CMS-PAS-SUS-20-002	Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at $\sqrt{s}=$ 13 TeV	EPJC 81 (2021) 970	March 2021
CMS-PAS-SUS-20-003	Search for chargino-neutralino production in final states with a Higgs boson and a W boson	JHEP 10 (2021) 045	March 2021
CMS-PAS-SUS-18-004	Search for physics beyond the standard model in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at 13 TeV	JHEP 04 (2022) 091	March 2021
CMS-SUS-19-010	Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PRD 104 (2021) 052001	1 March 2021
CMS-PAS-SUS-19-012	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\sqrt{s}=$ 13 TeV	JHEP 04 (2022) 147	February 2021
CMS-SUS-19-004	Search for top squarks in final states with two top quarks and several light-flavor jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PRD 104 (2021) 032006	13 February 2021
CMS-PAS-SUS-19-011	Search for top squark pair production in the dilepton final state using 137 fb $^{-1}$ of proton-proton collision integrated luminosity at $\sqrt{s}=$ 13 TeV	EPJC 81 (2021) 3	May 2020
CMS-PAS-SUS-19-009	Search for direct top squark pair production in events with one lepton, jets and missing transverse energy at 13 TeV	JHEP 05 (2020) 032	July 2019

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html

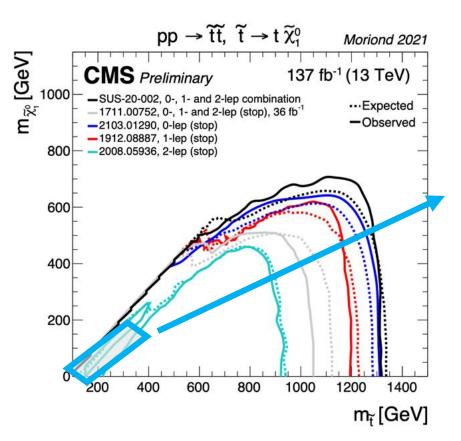
➤ Many SUSY searches have been published by CMS in the last few years.

CMS SEARCH PROGRAM FOR GLUINOS / STOPS


CMS-PAS-SUS-21-007	Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy object tagging in proton-proton collisions at $\sqrt{s}=$ 13 TeV		March 2022
CMS-PAS-SUS-21-002	Search for electroweak production of supersymmetric particles in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum	Submitted to PLB	August 2021
CMS-PAS-SUS-20-004	Search for higgsinos in channels with two Higgs bosons and missing transverse momentum in proton-proton collisions at $\sqrt{s}=$ 13 TeV	JHEP 05 (2022) 014	July 2021
CMS-PAS-SUS-21-001	Search for direct pair production of supersymmetric partners to the $ au$ lepton in the all-hadronic final state at $\sqrt{s}=$ 13 TeV		July 2021
CMS-PAS-SUS-20-002	Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at $\sqrt{s}=$ 13 TeV	EPJC 81 (2021) 970	March 2021
CMS-PAS-SUS-20-003	Search for chargino-neutralino production in final states with a Higgs boson and a W boson	JHEP 10 (2021) 045	March 2021
CMS-PAS-SUS-18-004	Search for physics beyond the standard model in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at 13 TeV	JHEP 04 (2022) 091	March 2021
CMS-SUS-19-010	Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PRD 104 (2021) 052001	1 March 2021
CMS-PAS-SUS-19-012	Search for electroweak production of charginos and neutralinos in proton-proton collisions at $\sqrt{s}=$ 13 TeV	JHEP 04 (2022) 147	February 2021
CMS-SUS-19-004	Search for top squarks in final states with two top quarks and several light-flavor jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV	PRD 104 (2021) 032006	13 February 2021
CMS-PAS-SUS-19-011	Search for top squark pair production in the dilepton final state using 137 fb $^{-1}$ of proton-proton collision integrated luminosity at $\sqrt{s}=$ 13 TeV	EPJC 81 (2021) 3	May 2020
CMS-PAS-SUS-19-009	Search for direct top squark pair production in events with one lepton, jets and missing transverse energy at 13 TeV	JHEP 05 (2020) 032	July 2019

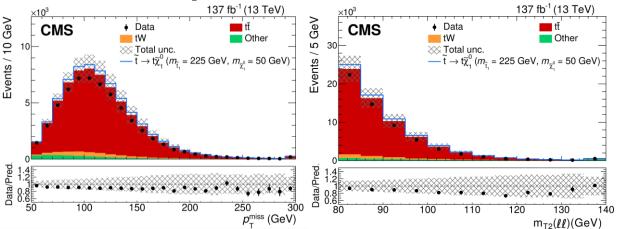
http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html

- Many SUSY searches have been published by CMS in the last few years.
- Several of them targeting gluinos and stops.


SUSY 2022

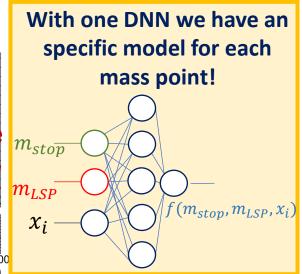
Stop searches

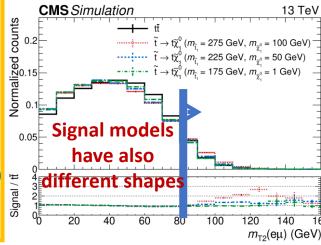
HIGH p_T^{miss} SEARCHES


- The stop quark plays an essential role in understanding the SUSY models.
- > Several searches with the full **Run 2 dataset** have been performed by the CMS Collaboration, but the so-called "**top corridor**" requires special care because...

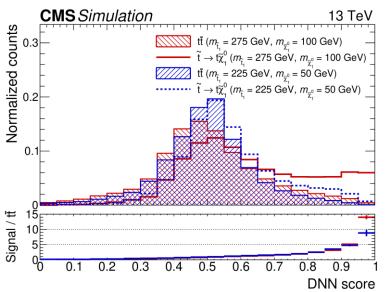
TOP CORRIDOR

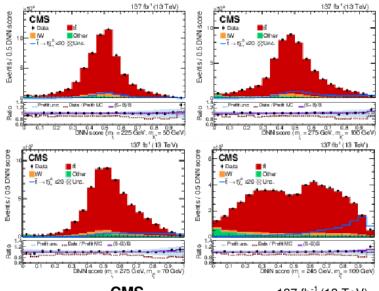
- The mass difference between stop and neutralino is close to the **top mass**.
- Signal and $t\bar{t}$ background have **similar kinematics**, especially at low neutralino masses.
- Signal events can only be detected as an excess on the $t\bar{t}$ cross section.
- The accurate estimation of $t\bar{t}$ process is very important to have sensitivity.
- ➤ Combination with three previous searches with 0, 1 and 2 leptons in the final state is also presented in this paper:
- Hadronic: Phys. Rev. D 104 (2021) 052001
- Single lepton: <u>JHEP 05 (2020) 032</u>
- Dileptons: *Eur. Phys. J. C81(2021) 3*

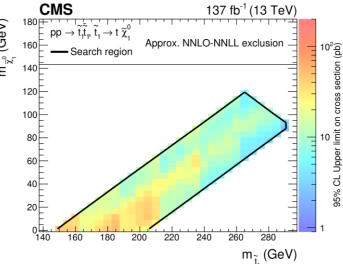

- ho Event selection: $\ell\ell$, \geq 2 jets, \geq 1 b-tagged jet, $p_T^{miss} \geq$ 50 GeV, $m_{\rm T2} \geq$ 80 GeV.
- Backgrounds: The main background is tt due to the similar kinematics with the signal process in this region. It is estimated from MC with an accurate knowledge.



Main strategy: use a parametric Deep Neural Network to separate signal from background. By introducing stop and LSP masses in the training we exploit the kinematic differences to maximize sensitivity.

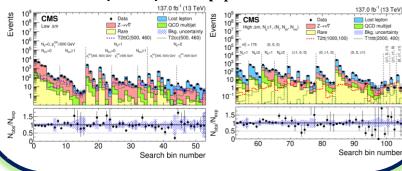

CMS Simulation 13 TeV


\$\text{t} \times \ti\ti_{\text{v}_{\text{i}}^{\text{0}}} (m_{\text{t}_{\text{i}}} = 275 \text{ GeV}, $m_{\text{z}_{\text{i}}^{\text{0}}} = 100 \text{ GeV}) \\
\tilde{t} \times \ti\ti\tilde{v}_{\text{i}}^{\text{0}} (m_{\text{t}_{\text{i}}} = 225 \text{ GeV}, <math>m_{\text{z}_{\text{i}}^{\text{0}}} = 50 \text{ GeV}) \\
\tilde{t} \times \ti\tilde{v}_{\text{i}}^{\text{0}} (m_{\text{t}_{\text{i}}} = 175 \text{ GeV}, <math>m_{\text{z}_{\text{i}}^{\text{0}}} = 1 \text{ GeV}) \\
\tilde{t} \text{ and stop have} \\
\text{different shapes} \\
\text{different shapes} \\
\text{0} \\
\t$



➤ The DNN score has different shapes due to the parametric training: there is one signal and one background distribution for each mass point.

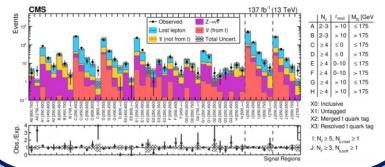
- ➤ **No excess** is observed and for the signal extraction the DNN output is used.
- ➤ Results are presented in terms of **upper limits** on the production cross section of top squark pairs at 95% confidence level for the T2tt model.
- > Full top corridor region is excluded for the first time by CMS!



COMBINATION ANALYSES

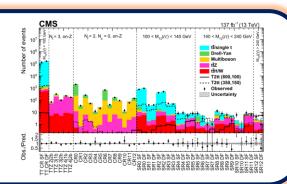
Fully hadronic analysis:

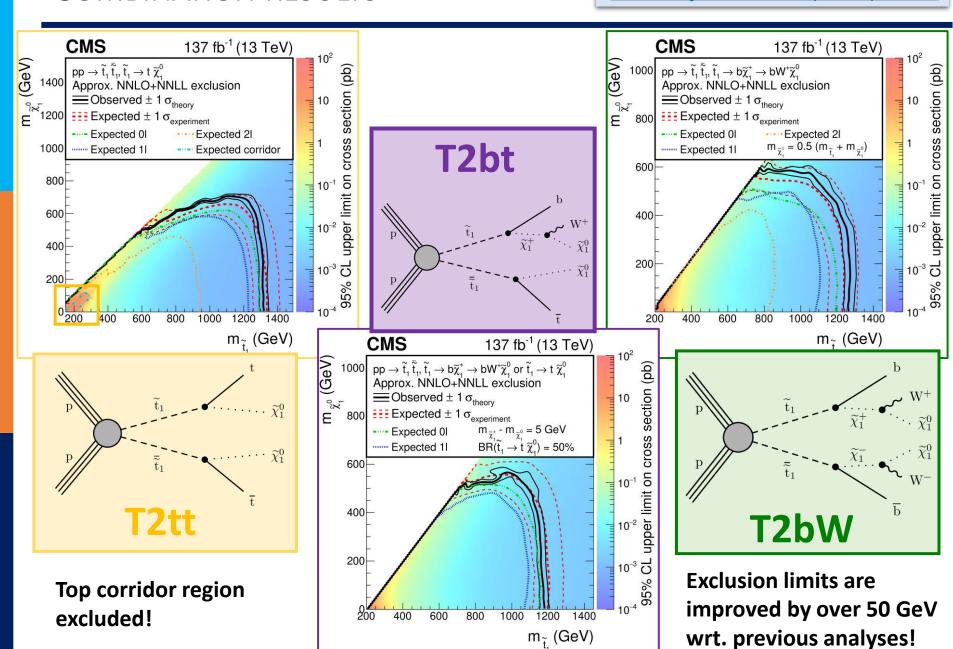
Phys. Rev. D 104 (2021) 052001


- High Δm: advanced jet tagging algorithms to identify hadronically decaying top quarks and W bosons.
- Low Δm : dedicated algorithm to identify very low p_T B hadrons.

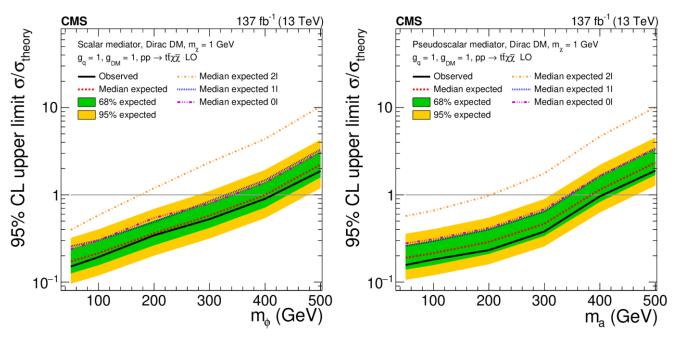
Single lepton analysis:

JHEP 05 (2020) 032

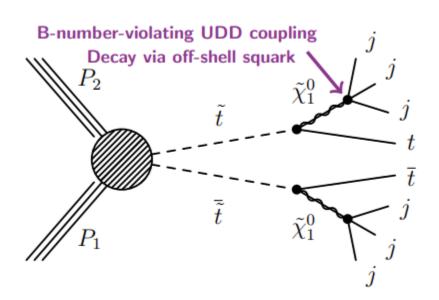

- M_T to suppress $t\bar{t}$ +jets/W+jets.
- Modified topness (t_{mod}) to discriminate against $t\bar{t}$.
- Hadronic top tagger categories (unmerged, merged and resolved).

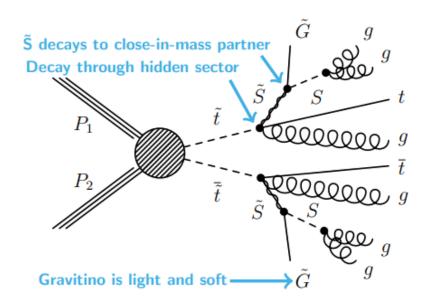


Dilepton analysis:


Eur. Phys. J. C. 81(2021) 3

- p_T^{miss} Significance to supress Drell-Yan.
- $m_{\mathrm{T2}}(\ell\ell)$ and $m_{\mathrm{T2}}(b\ell b\ell)$ to suppress $t\bar{t}$ +jets.
- ttZ(Z→inv) main irreducible background.


- The results of the inclusive top squark searches are also interpreted in an alternative DM signal model where a scalar (φ) or pseudoscalar (a) particle mediates the interaction between the DM candidate particle and SM quarks.
- $\begin{array}{c|c}
 g & & t \\
 \hline
 t & & \phi(a) \\
 \hline
 t & & \bar{\chi}
 \end{array}$ $\begin{array}{c}
 \chi \\
 \bar{\chi} \\
 g & & 0000 \\
 \hline
 \end{array}$
- Prior searches excluded φ and a mediator particles with a mass of up to 290 and 300 GeV, respectively.



- m_{χ} = 1 GeV and g_q = g_{DM} = 1 are assumed.
- Limits are set on $\sigma(tt+\phi/a\rightarrow \chi\chi)$.

Scalar and pseudoscalar mediators with a mass up to 400 GeV and 420 GeV are excluded, respectively.

- ➤ R-parity Violating SUSY: LSP is not stable and decays to SM → stop production would not end in large p_T^{miss} .
- ➤ Stealth (SYY) SUSY: Consider a hidden sector which simply contains a sfermion and a scalar partner and are very close in mass → stop decays through this hidden sector.

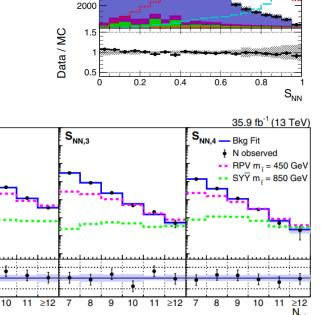
- Final state: $t\bar{t}$ + jets with very **high jet multiplicity**.
- Focused on (largely unexplored) low p_T^{miss} topologies of stop decays.

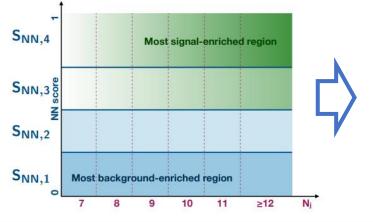
10000

6000

4000

Event selection

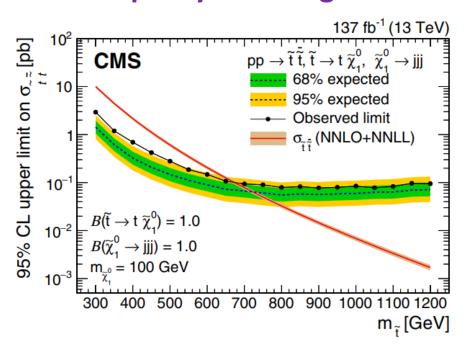

- Exactly one electron or muon, to reduce QCD background.
- Events are required to have at least 7 jests and large H_T .


• To reduce non $t\bar{t}$ + jets backgrounds, **at least one b-jet** and $50 < M_{b,l} < 250 \text{ GeV}$ are required.

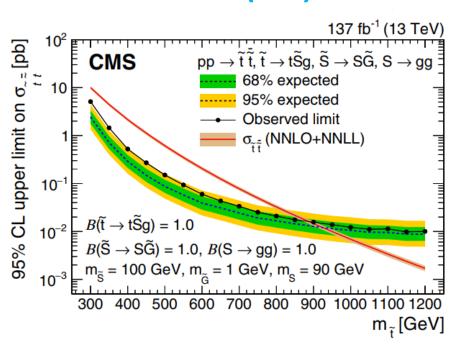
S_{NN,2}

Strategy

- A **Neural Network** (NN) is trained to enhance the discrimination between signal and the **primary** background $t\bar{t}$ + jets.
- Events are then divided into four NN score (SNN) signal regions and categorized by N_{iets}.

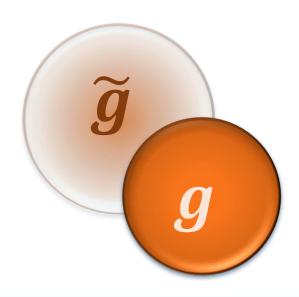

QCD multijet Other It ∔Data

Stealth SY \overline{Y} m_{\bar{x}} = 850 GeV ($\sigma_{\bar{x}\bar{x}} \times 16$)

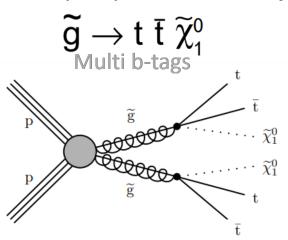

RPV $m_x = 450 \text{ GeV } (\sigma_{xx} \times 4)$

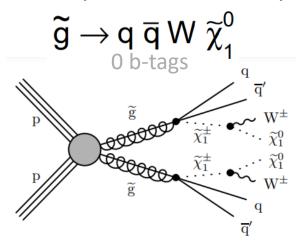
 \triangleright No significant deviations from SM predictions and results are interpreted in terms of **exclusion limits on** $\sigma_{t\bar{t}}$ at the 95% CL.

R-parity Violating SUSY

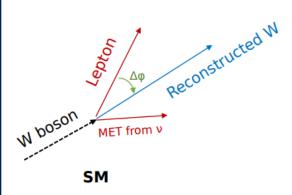


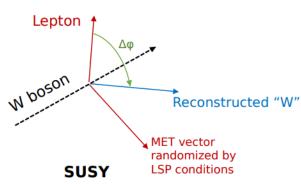
Stealth (SYY) SUSY

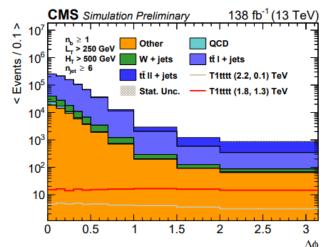



- Stop masses up to 670 GeV are excluded for the RPV model.
- Stop masses up to 870 GeV are excluded for the Stealth model.

Gluino searches

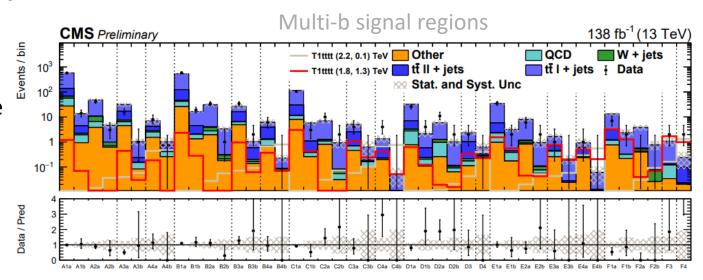



> Two gluino-pair production simplified models are explored in this analysis.

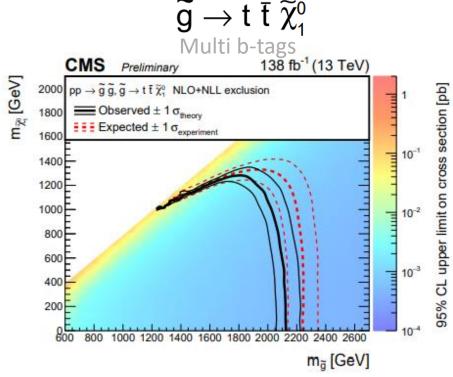


The main discrimination variable between signal and SM events is the azimuthal angle between the lepton momentum and the reconstructed leptonic W boson candidate: $\Delta \phi(W_{reco}, \ell)$

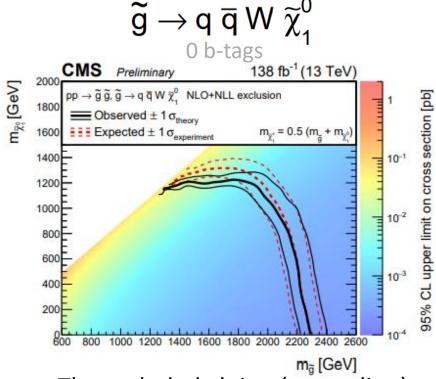
Event selection


- Exactly one electron or muon.
- Events are required to have at least 3 jets, and the two leading with $p_T > 80$ GeV.
- Events in the multi-b analyses are additionally required to contain at least one top tag.
- Large H_T and L_T to be not only sensitive to events with high p_T^{miss} , but also to signal events with very small p_T^{miss} but higher lepton p_T .

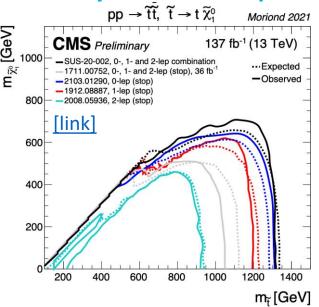
Strategy

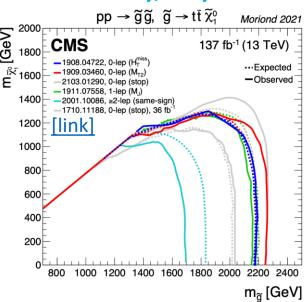

- The $\Delta \phi$ variable is used to further suppress the background contributions.
- The search region is split into bins of N_{jets} , N_{b-jets} , L_T , and H_T , and further categorized by N_{top} (N_W) for the multi-b (zero-b) analysis.

Backgrounds


 The main backgrounds arise from top quark pair production and W+jets production.

➤ No significant deviations from SM predictions and results are interpreted in terms of **exclusion limits** at the 95% CL.

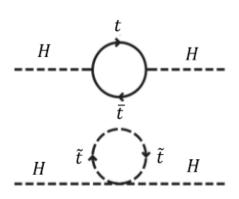

The excluded gluino (neutralino) masses reach up to 2130 (1270)
 GeV. Improvement of about 320 (170) GeV on the gluino (neutralino) masses.

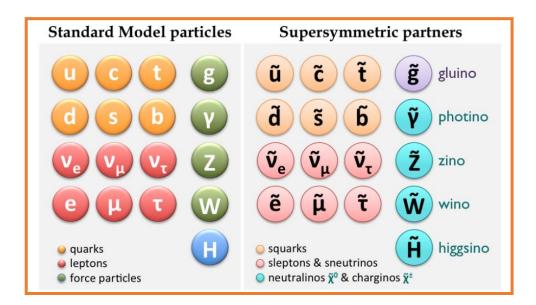


The excluded gluino (neutralino) masses reach up to 2280 (1220)
 GeV. Improvement of about 380 (270) GeV on the gluino (neutralino) masses.

SUMMARY

- > Several recent results with Run 2 dataset collected by the CMS experiment have been summarized.
- > A very varied program of searches has been completed in different final states and with different interpretations.
- > These results significantly extend the existing exclusion limit.
- > There are many more results published and on the way, stay tuned!

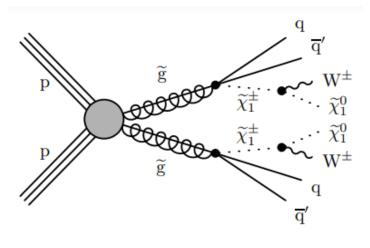

CMS Public SUSY Results:

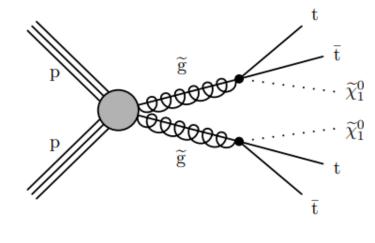

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html

Back up

INTRODUCTION

- > Supersymmetry is an extension of the SM that assigns a new particle (superpartner) to every SM particle differing only in ½ of spin.
- > This model can solve several shortcomings of the SM:
 - The hierarchy problem of the quantum loop corrections to the Higgs mass, due mainly to the top quark, can be compensated by the effect of the top quark superpartner.
 - If R-parity is conserved, the lightest supersymmetric particle (LSP) is stable and potentially massive, providing a good candidate for Dark Matter.
 - Unification.



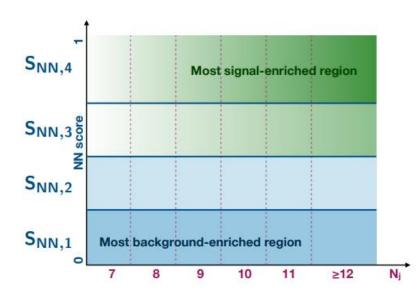

TARGET MODELS

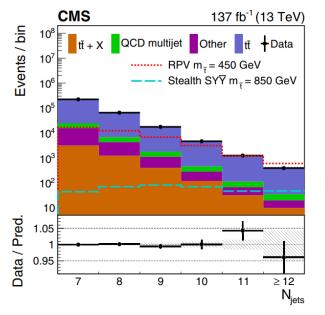
STOPS

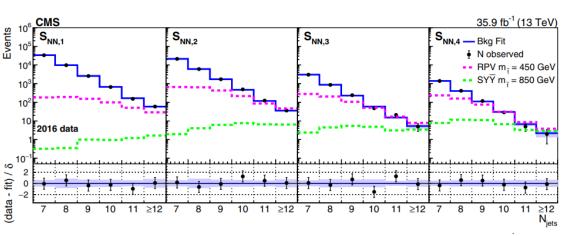
TOOLOOO g Receive a

GLUINOS

RPV


Stealth


M_{T2} variable


$$M_{\text{T2}} = \min_{\vec{p}_{\text{T,1}}^{\text{miss}} + \vec{p}_{\text{T,2}}^{\text{miss}} = \vec{p}_{\text{T}}^{\text{miss}}} \left(\max \left[m_{\text{T}}(\vec{p}_{\text{T}}^{\ell 1}, \vec{p}_{\text{T,1}}^{\text{miss}}), m_{\text{T}}(\vec{p}_{\text{T}}^{\ell 2}, \vec{p}_{\text{T,2}}^{\text{miss}}) \right] \right)$$

RPV/STEALTH STOPS

- The network uses gradient reversal to avoid correlation with Njets.
- A simultaneous fit over all SNN bins of the total Njets shape is performed, where the ttbar Njets shape is constrained to be the same in each region.

GLUINOS

	Multi b-tags						0 b-tags												
$n_{\rm jet}$	n _b	L _T [GeV]	H _T [GeV]	n,	Bin name	T1tttt sigr		Predicted	Observed	n _{jet}	L_{T} [GeV]	H_{T} [GeV]	$\Delta \phi$	n_{W}	Bin name	T5qqqqWW (1.8, 1.3) TeV	signal events (2.2, 0.1) TeV	Predicted background events	Observed events
						(1.8, 1.3) TeV		background events	events	. 5	[250, 350]	[500,750]	>1	0	G0a	1.2 ± 0.1	<0.1	342 ± 24	333
[6, 8]	1	[250, 450]	[500, 1500]	1	A1a	1.2 ± 0.1 0.07 ± 0.02	<0.1	576 ± 29	570					≥1	G0b	0.46 ± 0.08	< 0.1	70 ± 8	77
			> 1500	≥2	A1b		< 0.1	13 ± 2	14			750		0	G1a	0.35 ± 0.07	0.03 ± 0.01	292 ± 22	304
			≥1500	1	A2a	<0.1	0.01 ± 0.01	47 ± 7	42		[250, 450]	[500, 750]	<u> </u>	≥ 1	G1b G2a	0.14 ± 0.04 1.8 ± 0.2	0.02 ± 0.01 < 0.1	69 ± 10 71 ± 8	62 63
		[450, 600]	> 500	≥2	A2b	<0.1	0.04 ± 0.01	5±1	3		[350, 450]	[500,750]	>1	o ≥1	G2a G2b	0.60 ± 0.09	<0.1	71 ± 8 14 ± 5	25
		[450,600]	≥500	1	A3a	0.44 ± 0.06	0.04 ± 0.01	31 ± 6	16			750		0	G3a	0.44 ± 0.08	0.04 ± 0.01	66 ± 8	44
		> 600	> 500	≥2	A3b	0.03 ± 0.02	0.06 ± 0.01	1.0 ± 0.3	1					≥1	G3b	0.24 ± 0.06	0.03 ± 0.01	14 ± 4	13
		≥600	≥500	1	A4a	0.18 ± 0.04 < 0.1	0.44 ± 0.02 0.48 ± 0.02	7 ± 2 1.0 ± 0.5	8		[450,650]	[500,750]	>0.75	0	G4a	$\textbf{2.1} \pm \textbf{0.2}$	< 0.1	52 ± 7	45
		[050, 450]	[Eng. 4Eng]	≥2 1	A4b				-					≥1	G4b	1.1 ± 0.1	< 0.1	12 ± 3	9
	2	[250, 450]	[500, 1500]	•	B1a B1b	2.3 ± 0.1 0.28 ± 0.04	0.01 ± 0.01	532 ± 26 16 ± 2	586 19			[750, 1250]		0	G5a	0.9 ± 0.1	0.03 ± 0.01	42 ± 6	35
			> 4500	≥2			0.01 ± 0.01					>1250		≥ 1	G5b G6a	0.35 ± 0.07 < 0.1	< 0.1 0.17 ± 0.02	10 ± 3 16 ± 3	6 19
			≥1500	1	B2a B2b	<0.1	0.03 ± 0.01	30 ± 5	34 1			≥1250		o ≥1	G6b	< 0.1	0.17 ± 0.02 0.13 ± 0.02	3±1	3
		[450 cool	> 500	≥2		< 0.1	0.06 ± 0.01	3.4 ± 0.8			≥650	[500, 1250]	>0.5	0	G7a	1.3 ± 0.1	0.13 ± 0.02	33 ± 8	32
		[450,600]	≥500	1	B3a	1.0 ± 0.1	0.07 ± 0.01	27 ± 6	34 2		_			≥1	G7b	0.30 ± 0.06	0.04 ± 0.01	7 ± 2	8
		> 600	> 500	≥2	B3b	0.06 ± 0.02	0.09 ± 0.01	1.1 ± 0.5	_			≥1250		0	G8a	0.15 ± 0.05	1.78 ± 0.07	11 ± 3	8
		≥600	≥500	1	B4a	0.37 ± 0.05	0.67 ± 0.03	6.2 ± 1.6	6					≥ 1	G8b	0.04 ± 0.02	1.08 ± 0.05	0.6 ± 0.4	2
		[050, 450]	[Eng. 4Eng]	≥2	B4b	0.07 ± 0.02	0.80 ± 0.03	0.23 ± 0.08	0	[6, 7]	[250, 350]	[500, 1000]	>1	0	H1a	2.6 ± 0.2	< 0.1	281 ± 22	292
	≥3	[250, 450]	[500, 1500]	1	C1a	3.0 ± 0.1	0.01 ± 0.01	115 ± 7	105			>1000		≥ 1	H1b H2a	1.3 ± 0.1 0.23 ± 0.06	< 0.1 0.05 ± 0.01	71 ± 9 121 ± 11	71 121
			. 4500	≥2	C1b	0.43 ± 0.06	< 0.1	6 ± 1	3			≥1000		≥1	H2b	0.23 ± 0.06 0.18 ± 0.05	0.03 ± 0.01 0.02 ± 0.01	121 ± 11 29 ± 5	21
			≥1500	1	C2a	0.01 ± 0.01	0.03 ± 0.01	7 ± 2	10		[350, 450]	[500, 1000]	>1	0	НЗа	3.1 ± 0.2	<0.1	51 ± 6	71
				≥2	C2b	< 0.1	0.07 ± 0.01	1.0 ± 0.4	2		[,]	[,]		≥1	H3b	1.6 ± 0.2	0.01 ± 0.01	12 ± 3	15
		[450,600]	≥500	1	C3a	1.1 ± 0.1	0.06 ± 0.01	5±1	4			≥1000		0	H4a	0.31 ± 0.07	0.09 ± 0.01	31 ± 7	21
			. =00	≥2	СЗЬ	0.24 ± 0.04	0.10 ± 0.01	0.63 ± 0.43	0					≥1	H4b	0.12 ± 0.04	0.08 ± 0.01	6 ± 2	6
		≥600	≥500	1	C4a	0.42 ± 0.05	0.67 ± 0.02	1.4 ± 0.4	4		[450,650]	[500, 750]	>0.75	0	H5a	3.1 ± 0.2	< 0.1	19 ± 4	17
		[050 450]	[Eng. 4Eng]	≥2	C4b	0.05 ± 0.02	0.76 ± 0.03	0.05 ± 0.04	0		[200,000]	[000,100]		≥1	H5b	1.6 ± 0.2	<0.1	5 ± 2	9
≥9	1	[250, 450]	[500, 1500]	1	D1a	0.62 ± 0.06	<0.1	32 ± 3	26			[750, 1250]		0	H6a	2.8 ± 0.2	0.01 ± 0.01	29 ± 4	18
				≥2	D1b	0.12 ± 0.03	< 0.1	2.1 ± 0.6	4					≥1	H6b	1.4 ± 0.1	< 0.1	7 ± 2	4
			≥1500	1	D2a	0.02 ± 0.01	0.01 ± 0.01	6±1	11			≥1250		0	H7a	0.4 ± 0.07	0.45 ± 0.03	15 ± 3	14
		[450 600]	. =00	≥2	D2b	0.02 ± 0.01	0.02 ± 0.01	1.0 ± 0.3	2			·		≥1	H7b	0.2 ± 0.05	0.33 ± 0.03	3 ± 1	1
		[450,600]	≥500	≥1	D3	0.34 ± 0.05	0.04 ± 0.01	2.3 ± 0.6	2		≥650	[500, 1250]	>0.5	$0 \ge 1$	H8a H8b	2.5 ± 0.2 0.9 ± 0.1	0.09 ± 0.01 0.05 ± 0.01	13 ± 3 4 ± 1	17 4
		≥600	≥500	≥1	D4	0.23 ± 0.04	0.40 ± 0.02	0.6 ± 0.3	0			≥1250		0	H9a	0.9 ± 0.1 0.8 ± 0.1	3.9 ± 0.01	9±3	6
	2	[250, 450]	[500, 1500]	1	E1a	1.5 ± 0.1	0.01 ± 0.01	35 ± 3	35			_1200		≥1	H9b	0.34 ± 0.07	2.44 ± 0.08	2 ± 1	1
				≥2	E1b	0.55 ± 0.06	< 0.1	3.2 ± 0.7	2	≥8	[250, 350]	[500, 1000]	>1	0	I1a	0.8 ± 0.1	< 0.1	23 ± 5	25
			≥1500	1	E2a	0.05 ± 0.02	0.02 ± 0.01	8 ± 2	6					≥ 1	I1b	0.33 ± 0.07	< 0.1	7 ± 3	5
				≥2	E2b	0.04 ± 0.02	0.05 ± 0.01	1.0 ± 0.4	2			≥1000		0	I2a	0.30 ± 0.07	0.04 ± 0.01	22 ± 5	23
		[450,600]	≥500	1	E3a	0.75 ± 0.07	0.04 ± 0.01	1.7 ± 0.5	1					≥1	I2b	0.16 ± 0.05	0.01 ± 0.01	8 ± 2	12
				≥2	E3b	0.19 ± 0.03	0.06 ± 0.01	0.2 ± 0.1	0		[350, 450]	[500, 1000]	>1	0	I3a	0.8 ± 0.1	< 0.1	3.0 ± 0.7	10
		≥600	≥500	1	E4a	0.50 ± 0.05	0.30 ± 0.02	0.9 ± 0.4	1			≥1000		≥ 1	I3b I4a	0.36 ± 0.07 0.57 ± 0.09	< 0.1 0.07 ± 0.01	1.1 ± 0.4 5 ± 1	0 5
				≥2	E4b	0.21 ± 0.04	0.55 ± 0.02	0.06 ± 0.04	0			≥1000		0 ≥1	I4a I4b	0.37 ± 0.09 0.36 ± 0.07	0.07 ± 0.01 0.06 ± 0.01	3 ± 1 3 ± 1	2
	≥3	[250, 450]	[500, 1500]	1	F1a	3.2 ± 0.1	0.01 ± 0.01	13 ± 2	7		[450,650]	[500, 1250]	>0.75	0	I5a	1.5 ± 0.1	<0.1	3.4 ± 0.9	4
				≥2	F1b	1.27 ± 0.08	< 0.1	2.4 ± 0.8	2		[100,000]	[000/1200]	, 0	≥1	I5b	1.0 ± 0.1	<0.1	0.5 ± 0.3	1
			≥1500	1	F2a	0.04 ± 0.02	0.03 ± 0.01	4 ± 1	0			≥1250		0	I6a	0.40 ± 0.07	0.26 ± 0.03	2.6 ± 0.8	2
				≥2	F2b	0.07 ± 0.02	0.09 ± 0.01	0.7 ± 0.3	0					≥ 1	I6b	0.18 ± 0.05	0.17 ± 0.02	0.5 ± 0.3	2
		[450,600]	≥500 >500	≥1	F3	1.7 ± 0.1	0.16 ± 0.01	1.1 ± 0.4	2		≥650	[500, 1250]	>0.5	≥ 0	I7	1.4 ± 0.1	0.02 ± 0.01	1.5 ± 0.6	2
	DIA	≥600 NC 202	≥500	≥1	F4	1.0 ± 0.1	1.30 ± 0.03	0.2 ± 0.2	2		مام	≥1250			I8	1.4 ± 0.1	3.58 ± 0.09	1.5 ± 0.7	1
	RLC	DIS 202	1					Andrea Traj	oote – L	J. UVIE	200							24	

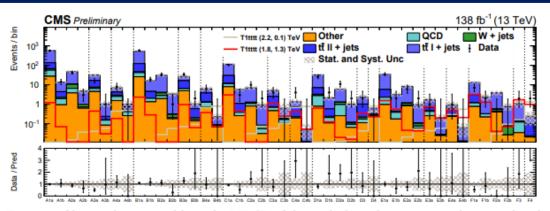


Figure 8: Observed event yields in the MB SR of the multi-b analysis compared to signal and background predictions, for all three years combined. The relative fraction of the different SM EW background contributions determined in simulation is shown by the stacked, colored histograms, normalized so that their sum is equal to the background estimated using data control regions. The QCD background is predicted using the $L_{\rm P}$ method. The signal is shown for two representative combinations of gluino/neutralino masses with large (2.2 TeV/0.1 TeV) and small (1.8 TeV/1.3 TeV) mass differences.

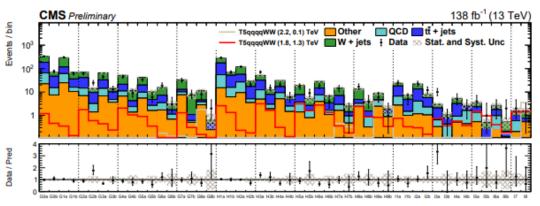


Figure 9: Observed event yields in the MB SR of the zero-b analysis compared to signal and background predictions, for all three years combined. The W+jets, $t\bar{t}$, and QCD predictions are extracted from data control samples, while the other background contributions are estimated from simulation. The signal is shown for two representative combinations of gluino/neutralino masses with large (2.2 TeV/0.1 TeV) and small (1.8 TeV/1.3 TeV) mass differences.