

Phenomenology of LNV in SMEFT at dimension 7

Kåre Fridell

The XXIX International Conference on

Technische Universität München

Supersymmetry and Unification of Fundamental

kare.fridell@tum.de

Interactions (SUSY 2022)

Based on arXiv:2207:XXXXX in collaboration with

2022.06.26 - 07.02

Lukas Graf, Julia Harz, and Chandan Hati

University of Ioannina

Evidence of New Physics

The Standard Model (SM) is a very successful theory, but it is known to be imcomplete by several different observations.

Baryon asymmetry

Evidence from neutrino oscillations.

Neutrino masses and LNV

One possibility: Dirac mass $\,
u_L
eq
u_R^c \,$

Very small neutrino masses imply very small Yukawa couplings: $y_{
u} \sim 10^{-12}$

Well motivated scenario: Majorana mass $u_L =
u_R^c$

Neutrino Majorana mass implies Lepton Number Violation (LNV)

LNV is related to the matter/antimatter asymmetry:

A lepton asymmetry can be converted into a baryon asymmetry via sphaleron transitions (part of the SM)

Majorana neutrino mass: $\Delta L = 2$

Sphalerons: $\Delta L = -\Delta B = 3$

Can LNV be studied in a model-independent way?

SM Effective field theory

$$\mathcal{L}_{\text{EFT}} = \sum_{i} C_i \mathcal{O}_i + \text{h.c.}$$
 Wilson coefficient: $C_i \propto \frac{1}{\Lambda^{(D-4)}}$, $\Lambda = \text{New Physics (NP)}$ scale

LNV only occurs at odd mass dimension

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda_1} \mathcal{O}_1^{(5)} + \sum_i rac{1}{\Lambda_i^3} \mathcal{O}_i^{(7)} + \sum_i rac{1}{\Lambda_i^5} \mathcal{O}_i^{(9)} + \cdots$$

All SMEFT operators up to mass dimension 11 have been classified (excluding derivatives)

Babu, Leung (2001), de Gouvêa, Jenkins (2007), Deppisch et. al. (2018)

Lowest dimension for ΔL = 2 LNV: The dimension-5 operator $\mathcal{O}_{LH}^{(5)}=L^{\alpha}L^{\beta}H^{\rho}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$

LNV at dimension-7

Second-most simple realization: LNV at dimension-7

e.g. Lehman (2014), Liao, Ma (2019)

- 12 operators instead of one
- Phenomenologically rich: can be UVcompleted by 26 different fields in 56 different combinations
- Can lead to radiative neutrino mass

Type	O	Operator				
$\Psi^2 H^4$	\mathcal{O}^{pr}_{LH}	$\epsilon_{ij}\epsilon_{mn}\left(\overline{L_p^c}^iL_r^m\right)H^jH^n\left(H^\dagger H\right)$				
$\Psi^2 H^3 D$	\mathcal{O}^{pr}_{LeHD}	$\epsilon_{ij}\epsilon_{mn}\left(\overline{L_p^c}^i\gamma_{\mu}e_r\right)H^j\left(H^miD^{\mu}H^n\right)$				
$\Psi^2 H^2 D^2$	\mathcal{O}^{pr}_{LHD1}	$\epsilon_{ij}\epsilon_{mn}\left(\overline{L_p^c}^iD_{\mu}L_r^j\right)\left(H^mD^{\mu}H^n\right)$				
	\mathcal{O}^{pr}_{LHD2}	$\epsilon_{im}\epsilon_{jn}\left(\overline{L_p^c}^iD_{\mu}L_r^j\right)\left(H^mD^{\mu}H^n\right)$				
$\Psi^2 H^2 X$	\mathcal{O}^{pr}_{LHB}	$g\epsilon_{ij}\epsilon_{mn}\left(\overline{L_p^c}{}^i\sigma_{\mu\nu}L_r^m\right)H^jH^nB^{\mu\nu}$				
	\mathcal{O}^{pr}_{LHW}	$g'\epsilon_{ij}(\epsilon\tau^I)_{mn}(\overline{L_p^c}{}^i\sigma_{\mu\nu}L_r^m)H^jH^nW^{I\mu\nu}$				
$\Psi^4 D$	$\mathcal{O}_{ar{d}uLLD}^{prst}$	$\epsilon_{ij} \left(\overline{d_p} \gamma_{\mu} u_r \right) \left(\overline{L_s^c}^i i D^{\mu} L_t^j \right)$				
$\Psi^4 H$	$\mathcal{O}^{prst}_{ar{e}LLLH}$	$\epsilon_{ij}\epsilon_{mn}\left(\overline{e_p}L_r^i\right)\left(\overline{L_s^c}^jL_t^m\right)H^n$				
	$\mathcal{O}_{ar{d}LueH}^{prst}$	$\epsilon_{ij} \left(\overline{d_p} L_r^i \right) \left(\overline{u_s^c} e_t \right) H^j$				
	$\mathcal{O}^{prst}_{ar{d}LQLH1}$	$\epsilon_{ij}\epsilon_{mn}\left(\overline{d_p}L_r^i\right)\left(\overline{Q_s^c}^jL_t^m\right)H^n$				
	$\mathcal{O}_{ar{d}LQLH2}^{prst}$	$\epsilon_{im}\epsilon_{jn}\left(\overline{d_p}L_r^i\right)\left(\overline{Q_s^c}^jL_t^m\right)H^n$				
	$\mathcal{O}_{ar{Q}uLLH}^{prst}$	$\epsilon_{ij} (\overline{Q_p} u_r) (\overline{L_s^c} L_t^i) H^j$				

Experimental probes of dimension-7 LNV?

Neutrinoless double beta decay

Neutrinoless double beta decay ($0\nu\beta\beta$):

+Most sensitive probe of LNV-Only sensitive to electron flavour

Currently most stringent limit:

$$T_{1/2}^{^{136}\text{Xe}} \le 2.3 \times 10^{26} \text{ yrs, } 90\% \text{ C.L.}$$

KamLAND-Zen collaboration (2022)

e.g. Cirigliano et. al. (2017)

Dimension-7 LNV operators give rise to long-range contributions to 0vββ decay

The muon sector

LNV μ decay: $\mu^+ \rightarrow e^+ \bar{\nu}_e \bar{\nu}_\mu$

- + Includes the μ flavour
- Probes only a single operator

e.g. Cirigliano et. al. (2017)

$$BR(\mu^+ \to e^+ \bar{\nu}_e \bar{\nu}_\mu) \lesssim 0.9 \times 10^{-3}$$

KARMEN collaboration (2003)

μ⁻ to e⁺ conversion

- + Includes the μ flavour
- Dimension-9

e.g. Berryman, de Gouvêa, Kelly, Kobach (2017)

$$R_{\mu^- e^+}^{\text{Ti}} \equiv \frac{\Gamma(\mu^- + \text{Ti} \to e^+ + \text{Ca})}{\Gamma(\mu^- + \text{Ti} \to \nu_\mu + \text{Sc})} < 1.7 \times 10^{-12}$$

SINDRUM II collaboration (1998)

LNV in meson decays (e.g. kaons)

Double charged lepton final state

+Guaranteed LNV

-Dimension-9

e.g. Chun, Das, Mandal, Mitra, Sinha (2019)

Muons or electrons in the final state

$$BR(K^+ \to \pi^- \mu^+ \mu^+) \le 4.2 \times 10^{-11}, 90\% \text{ C.L.}$$

NA62 collaboration (2019)

Two-neutrino final state (rare)

+Dimension-7

e.g. Li, Ma, Schmidt (2019) Deppisch, KF, Harz (2020)

-LNV not guaranteed

Cannot determine flavour of neutrinos

Experiment:

$$BR(K^+ \to \pi^- \nu \bar{\nu}) = (10.6^{+4.9}_{-4.3}) \times 10^{-11}, 68\% \text{ C.L.}$$

NA62 collaboration (2021)

SM expectation:

$$BR(K^+ \to \pi^- \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$$

Buras et. al. (2015)

LNV at the LHC

Keung-Senjanović process: leads to LNV at **dimension-9** when integrating out the heavy fields

Probes $5 \text{ GeV} \gtrsim m_N \gtrsim 50 \text{ GeV}$ for couplings $|U_{e/\mu}| \gtrsim 10^{-5}$

ATLAS collaboration (2019) + ...

Fuks et. al. (2021)

Possible to probe the **dimension-5** Weinberg operator at colliders in vector boson fusion

$$m_{\mu\mu} < 10.8 \text{ GeV at } 95\% \text{ C.L.}$$

$$m_{\ell\ell'} = rac{C_{\ell\ell'} v^2}{\Lambda}$$
 CMS collaboration (2022)

Dimension-7 LNV at the LHC

Nine out of the twelve dimension-7 Δ L=2 LNV operators lead to $p\,p \to \ell^\pm\,\ell^\pm\,j\,j$

$$\mathcal{O}_{\bar{d}uLLD}^{prst} = \epsilon_{ij} \overline{d_p} \gamma_\mu u_r \overline{L_s^c}{}^i i D^\mu L_t^j$$

Leads to the same signal as for dimension-9 processes: we can use existing LHC results and compare with EFT cross section obtained using MadGraph5_AMC@NLO

J. High Energ. Phys. (2019) 2019: 16 DOI: 10.1007/JHEP01(2019)016

CERN-EP-2018-199 13th November 2019

Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at \sqrt{s} = 13 TeV with the ATLAS detector

Alwall et. al. (2014)

No events in 36.1 fb⁻¹ of data.

Leads to constraints on Λ_{LNV}

LHC results for dimension-7

LNV scales in TeV

Operator	$\Lambda_{ m LNV}$	$\Lambda_{ m LNV}^{ m future}$		
$\mathcal{O}_{ar{d}LueH}$	0.72	5.1		
$\mathcal{O}_{ar{d}LQLH1}$	0.71	4.8		
$\mathcal{O}_{ar{d}LQLH2}$	0.71	4.1		
$\mathcal{O}_{ar{Q}uLLH}$	0.85	6.0		
\mathcal{O}_{LDH1}	0.40	3.2		
\mathcal{O}_{LDH2}	0.22	1.2		
\mathcal{O}_{LeHD}	0.13	0.51		
$\mathcal{O}_{ar{d}uLLD}$	2.2	28		
\mathcal{O}_{LH}	0.20	0.91		

Constraints at 95% C.L.

LNV scales $\sim O$ (1 TeV) are constrained by same-sign dilepton plus dijet searches at the LHC For FCC the constraints could reach $\sim O$ (few TeV) up to ~ 30 TeV

EFT vs simplified model

We can compare the EFT approach with a simplified model example to see how well it performs

$$\mathcal{O}_{\bar{Q}uLLH} = \epsilon_{ij} \overline{Q} u \overline{L^c} L^i H^j$$

 $\mathcal{L} \supset \lambda_1 \bar{d}_L u_R \chi^* + \lambda_2 \bar{e}_L^c \nu_L \chi + \text{h.c.}$

Using the relation

$$\frac{\lambda_1 \lambda_2}{M_{\text{med}}^2} = \frac{v}{(\Lambda_{\text{LNV}}^{\text{eff}})^3}$$

we naively expect the same cross section for the simplified model and EFT operator

Comparison of different probes

KF, Graf, Harz, Hati (2022)

The red bars constitute new constraints on dimension-7 operators using LHC results

We see that LHC offers the most effective way to probe the μ flavour content of dimension-7 ΔL = 2 SMEFT operators

Conclusion

- Neutrino masses may violate lepton number via a Majorana mass term, which in turn could be connected to the baryon asymmetry via leptogenesis.
- Dimension-7 LNV operators offer the second simplest solution to realize LNV mechanisms on an effective level.
- We find that the most stringent μ -sector constraints on the scale of LNV in many dimension-7 operators come from collider searches.

Thank you

Backup slides

Limitations on the EFT approach

EFTs are only valid for $M_{\rm med}^2 > Q^2$

$$\frac{1}{Q^2 - M_{\text{med}}^2} = -\frac{1}{M_{\text{med}}^2} \left[1 + \frac{Q^2}{M_{\text{med}}^2} + \mathcal{O}\left(\frac{Q^4}{M_{\text{med}}^4}\right) \right]$$

We can compare effective mediator mass with the average momentum transfer to get an idea of the validity range

$$\Lambda_{\rm LNV} = M_{\rm med}/(\lambda_1 \lambda_2)^{1/3}$$

$$\langle Q^2 \rangle = \frac{\sum_{q\bar{q}} \int (\text{PDF} \times \text{PDF}) Q^2}{\sum_{q\bar{q}} \int (\text{PDF} \times \text{PDF})}$$

Details of meson decay probes

Two operators are constrained by rare meson decays: no handle on flavour content since the final state neutrinos are not observed

Li, Ma, Schmidt (2019), Deppisch, KF, Harz (2020)

Operator explosion

"Explode" an operator to find all possible tree-level UV completions using combinatorics

$$\mathcal{O}_{\overline{Q}uLLH} = \epsilon_{ij}(\overline{Q}u)(\overline{L^C}L^i)H^j \rightarrow \epsilon_{ij}\overline{Q^kuL^kL^i}H^j$$

$$\mathcal{O}_{\overline{Q}uLLH} \rightarrow \epsilon_{ij}\chi_1^kL^kL^iH^j / \epsilon_{ij}\phi_1^kuL^iH^j / \epsilon_{ij}\psi_1^kuL^kH^j / \epsilon_{ij}\psi_1^kuL^kH^j / \epsilon_{ij}\xi_1^kuL^kL^i$$

Leads to $4 \times 3 = 12$ models, but not all are unique.

$$\chi_1 \sim S(1,2,1/2) \quad \psi_1 \sim V(\overline{3},1,-2/3) \quad \phi_1 \sim V(\overline{3},3,-2/3) \quad \xi_1 \sim F_L(\overline{3},3,1/3)$$

$$\chi_2 \sim F_R(1,1,0) \quad \psi_2 \sim F_R(1,1,0) \quad \phi_2 \sim F_R(1,3,0) \quad \xi_2 \sim S(1,3,1)$$

$$\chi_3 \sim F_R(1,3,0) \quad \psi_3 \sim F_L(\overline{3},2,-7/6) \quad \phi_3 \sim F_L(\overline{3},2,-7/6) \quad \xi_3 \sim V(\overline{3},2,-1/6)$$

$$\chi_4 \sim S(1,3,1) \quad \psi_4 \sim V(\overline{3},2,-1/6) \quad \phi_4 \sim V(\overline{3},2,-1/6) \quad \xi_4 \sim V(\overline{3},2,-1/6)$$

Here we find the simplified model that we used as an example earlier

Teaser: neutrino mass

Given all possible tree-level UV-completions of a dimension-7 operator, we can classify them in terms of the neutrino mass topology

We can then compare with the different EFT LNV constraints to see which mass mechanisms are excluded.... Look to arXiv:2207:XXXXX

○ = Generates the dimension-5 Weinberg operator

$$\mathcal{O}_{\overline{Q}uLLH} = \epsilon_{ij} (\overline{Q}_p u_r) (\overline{L}_s^c L_t^i) H^j$$

		Q all		•					
	Δ	φ	N	Σ	Q_7	T_1^{\dagger}	U_1	\bar{V}_2^\dagger	U_3
Δ		I			II	II			
φ			0	0					
N							0	0	
Σ								0	0
Q_7							II		II
$\begin{array}{ c c }\hline Q_7\\ T_1^{\dagger}\\ \end{array}$								II	
U_1								Ι	
$\begin{array}{ c c }\hline U_1\\ \hline \bar{V}_2^{\dagger}\\ \end{array}$			·						Ι
U_3									

Field | Rep
$$(SU(3)_c, SU(2)_L, U(1)_Y)(3B)$$

 Δ | $S(1,3,1)(0)$
 φ | $S(1,2,1/2)(0)$
 N | $F(1,1,0)(0)$
 Σ | $F(1,3,0)(0)$
 Q_7 | $F(3,2,7/6)(1)$
 T_1 | $F(3,3,-1/3)(1)$
 U_1 | $V(3,1,2/3)(1)$
 \bar{V}_2 | $V(\bar{3},2,-1/6)(-1)$
 U_3 | $V(3,3,2/3)(1)$

$$u_{\alpha}$$
Topology I

 ν_{α}
Topology II

KF, Graf, Harz, Hati (2022)