Explaining lepton-flavor non-universality and self-interacting dark matter with $L_{\mu} - L_{\tau}$

Julian Heeck

SUSY 2022, Ioannina, Greece

6/27/2022

Muon magnetic moment

Measured at Brookhaven:

$${\rm a}_{\mu}^{\rm exp} = 116592089(63)\times 10^{-11}.$$
 [hep-ex/0602035, ~3k citations]

Repeated at Fermilab:

$$a_{\mu}^{\rm exp}=116592040(54)\times 10^{-11}.$$
 [2104.03281, ~1k citations]

Difference with SM prediction: [Aoyama+, 2006.04822]

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (251 \pm 59) \times 10^{-11}$$
 . (4 σ)

- Anomalous moment a = (g-2)/2 is anomalous!
- More data and more hadronic calculations on the way.
- Reliable anomaly, explain via new particles in loop!

Z' constraints

- For $M_{Z'}$ < 10 MeV: BBN & CMB constraints on N_{eff} . [Escudero+ '19]
- Couplings of electron « muon.
- Couplings to quarks suppressed to satisfy neutrino oscillations in matter.

[**JH**, Lindner, Rodejohann, Vogl, '19; Coloma, Gonzalez-Garcia, Maltoni, '21]

- Couple to µ but not e & q.
- Only anomaly-free Z':

$$\mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{ au}}$$

[tiny loophole: Greljo+ '22]

Z' constraints

- For $M_{Z'}$ < 10 MeV: BBN & CMB constraints on $N_{\rm eff}$. [Escudero+ '19]
- Couplings of electron « muon.
- Couplings to quarks suppressed to satisfy neutrino oscillations in matter.

[**JH**, Lindner, Rodejohann, Vogl, '19; Coloma, Gonzalez-Garcia, Maltoni, '21]

- Couple to µ but not e & q.
- Only anomaly-free Z':

$$\mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}}$$

[tiny loophole: Greljo+ '22]

Z' constraints

• For $M_{Z'}$ < 10 MeV: BBN & CMB constraints on N_{eff} . [Escudero+ '19]

- Couplings of electron « muon.
- Couplings to quarks suppressed to satisfy neutrino oscillations in matter.

[**JH**, Lindner, Rodejohann, Vogl, '19; Coloma, Gonzalez-Garcia, Maltoni, '21]

- Couple to µ but not e & q.
- Only anomaly-free Z':

$$\mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{ au}}$$

[tiny loophole: Greljo+ '22]

Current $L_{\mu} - L_{\tau}$ constraints

Current $L_{\mu} - L_{\tau}$ constraints

SUSY '22 Julian Heeck

Future $L_{\mu} - L_{\tau}$ constraints

We did it!

- Resolved muon g-2 via gauge boson à la Schwinger!
- $U(1)_{L_{\mu}-L_{\tau}}$ needs

$$g' \simeq 5 \times 10^{-4} - 10^{-3} \, ,$$

$$M_{Z'} \simeq 10 - 200 \, \text{MeV} \, .$$

$$ightharpoonup$$
 $\mathsf{Z}' o ar{
u}_{\mu}
u_{\mu}, ar{
u}_{\tau}
u_{\tau}$

What else can $L_{\mu} - L_{\tau}$ do?

It induces lepton-flavor non-universality: e, μ , τ interact differently!

$$R_{K^{(*)}} \equiv \frac{\Gamma(B \rightarrow K^{(*)} \mu \mu)}{\Gamma(B \rightarrow K^{(*)} ee)}$$

- Neutral current, $\mbox{loop-level SM: } R_{K^{(*)}} \simeq 1 \, . \label{eq:loop-level}$
- LHCb anomaly:

$$- R(K) = 0.85, (3\sigma)$$

$$- R(K^*) = 0.69. (2.5\sigma)$$

[LHCb, Nature '22]

Belle II will increase significance!

$$R_{K^{(*)}} \equiv \frac{\Gamma(B \rightarrow K^{(*)} \mu \mu)}{\Gamma(B \rightarrow K^{(*)} ee)}$$

- Neutral current, $\mbox{loop-level SM: } R_{K^{(*)}} \simeq 1 \, .$
- LHCb anomaly:

$$- R(K) = 0.85, (3\sigma)$$

- $R(K^*) = 0.69. (2.5\sigma)$
- Global fit to all b → sµµ data: new operator

$$\frac{1}{(35 \, \text{TeV})^2} \, \overline{\mathsf{s}} \gamma_\alpha \mathsf{P}_\mathsf{L} \mathsf{b} \, \overline{\mu} \gamma^\alpha \mathsf{P}_\mathsf{L} \mu \, .$$

preferred at 5.6σ!

[other fits agree, e.g. 2104.08921]

[Altmannshofer, Stangl, 2103.13370]

SUSY '22

New-physics implications

- How do you get this operator $\frac{1}{(35\,\text{TeV})^2}\,\bar{s}\gamma_\alpha P_L b\,\overline{\mu}\gamma^\alpha P_L \mu\,?$
- Tree level: Z' or leptoquark. [see hep-ph]

- Heavy Z' could be modification of $L_{\mu} L_{\tau}$, but no Δa_{μ} .
- Unique scalar leptoquark: $S_3 \sim$ (3,3,-1/3). [Angelescu+, '18 & '21] $\mathcal{L} = y_{ij} \bar{Q}_i S_3 L_i^c + x_{ij} Q_i Q_j S_3$
- Leads to proton decay and lepton-flavor violation!

More anomalies with $L_{\mu} - L_{\tau}$

- Can use L_u L_τ to forbid couplings.
- Take leptoquark $S_3 \sim (3,3,-1/3)$: $\mathcal{L} = y_{ij}\bar{Q}_iS_3L_j^c + x_{ij}Q_iQ_jS_3$
- Charge S₃ ~ +1 under L_μ L_τ to get x_{ij} = 0, y_{ij} = y_{iμ}.
 → no more proton decay, no lepton flavor violation, only coupling to muons!
- Perfect for R(K) & R(K*)!
 [Hambye, JH, PRL '18; Davighi, Kirk, Nardecchia, '20; Greljo, Stangl, Thomsen, '21]
- $L_{\mu} L_{\tau}$ ideal symmetry for LFUV in $b \rightarrow s\mu\mu$ decays.

$$R_{D^{(*)}} \equiv \frac{\Gamma(\overline{B} \to D^{(*)} \tau \nu)}{\Gamma(\overline{B} \to D^{(*)} \ell \nu)}$$

- Charged current, tree-level SM.
- LHCb, BaBar, Belle.
- Good operator

$$\frac{1}{(3\,{\rm TeV})^2}\,\overline{{\rm c}}\gamma_{\alpha}{\rm P}_{\rm L}{\rm b}\,\overline{ au}\gamma^{\alpha}{\rm P}_{\rm L}\nu$$
 .

[HFLAV; Bernlochner+, '17; Di Luzio+, '17;...]

- Low scale, many constraints: $B \rightarrow K \nu \nu$, $B_c \rightarrow \tau \nu$. [Li+. 1605.09308: Alonso+, 1611.066761
- M+ or leptoquark (S₁ or R₂). [Angelescu+, '18 & '21]
 - Same problem: proton decay and lepton flavor violation!

Even more anomalies with $L_{\mu} - L_{\tau}$

- Can use $L_{\mu} L_{\tau}$ to forbid couplings.
- Take LQ $S_1 \sim (3,1,-1/3)$: $\mathcal{L} = y_{ij} \bar{Q}_i S_1 L_j^c + x_{ij} Q_i Q_j S_1 + \dots$
- Charge S₁ ~ -1 under L_μ L_τ to get x_{ij} = 0, y_{ij} = y_{iτ}.
 → no more proton decay, no lepton flavor violation, only coupling to tauons!
- Perfect for R(D) & R(D*)!
 [Angelescu+, 2103.12504, Greljo+, 2103.13991; JH & Thapa, 2202.08854]
- $L_{\mu} L_{\tau}$ ideal symmetry for LFUV in $b \rightarrow c\tau \nu$ decays.

Dark matter from L_{μ} – L_{τ} ?

- DM under $U(1)_{L_{\mu}-L_{\tau}}$: stability, Z' mediator, asymmetry (?). [Cirelli, Kadastik, Raidal, Strumia, 0809.2409; Baek, Ko, 0811.1646; Foldenauer, PRD '19; Hapitas, Tuckler, Zhang, 2108.12440; Holst, Hooper, Krnjaic, PRL '22]
- No constraints from direct detection.
 - (Although DM heats up neutron stars!) [JH, Garani, 1906.10145]
- Z' mediator light: DM DM → Z' Z'.
 - Indirect detection (DM DM → neutrinos) suppressed.
 - Large DM self interactions? [Kamada+, '18]
 - Velocity-dependent σ for light Z'! [JH & Thapa, 2202.08854]

16

 Can resolve small-scale structure problems! [Kaplinghat, Tulin, Yu, 1508.03339]

Small scale structure

- Self-interacting DM cross sections $\sigma/m\sim 1\,{\rm cm^2/g}$ preferred at small scales but disfavored in clusters.
- Z' Yukawa potential gives good velocity dependence for light Z'! [Kaplinghat, Tulin, Yu, 1508.03339, PRL '16]
- L_μ L_τ avoids CMB constraints. [Bringmann+, PRL '17; Hambye+, '20]

 Small scale structure can be improved in the g-2 region!

 DM between GeV and 400 GeV.

CMB-S4 probes more!

Summary: a full $L_{\mu} - L_{\tau}$ model

- Gauge $L_{\mu} L_{\tau}$ (and break it in neutrino sector to get M_{ν}).
- Add LQ $S_1 \sim (3,1,-1/3)$ with $L_{\mu} L_{\tau} \sim -1$ to explain R(D) and LQ $S_3 \sim (3,3,-1/3)$ with $L_{\mu} L_{\tau} \sim +1$ to explain R(K).
 - U(1) eliminates proton decay and lepton flavor violation.
- Z' in mass range 10-100 MeV explains (g-2)...
- Charge new particles under $L_u L_{\tau}$.
 - Stability through U(1)' → dark matter!
 - Relic abundance through Z'.
 - Self-interactions via light Z' explain small-scale structure!

Only $L_{_{II}} - L_{_{T}}$ can do all this!

Backup

How to get Z'?

Simplest: promote global symmetries of SM:

- All give desired Z' vector coupling to muons, could mix.
- (More general: charge vector-like fermions under U(1) and mix them with SM fermions. → Arbitrary Z' couplings.) [Fox+ '11]

Baryon minus lepton number

- Z' couplings to all SM fermions.
- Δa₁ long excluded by neutrino scattering.

[JH '14; Bauer, Foldenauer, Jaeckel, '18; Ilten, Soreq, Williams, Xue, '18]

• Couplings to electrons and neutrinos exclude g-2 region.

Turn off neutrino couplings?

SUSY '22

U(1)': Dark photon

- Massive Z' couples to SM via kinetic mixing $\epsilon F^{\mu\nu}F'_{\mu\nu}$
- Z' couplings proportional to electric charge.
- Constraints from e.g.

$$\pi^0 \rightarrow \gamma Z' \rightarrow \gamma e^+ e^-$$

at NA48/2 [PLB '15] and many other electron observables.

- Cannot explain Δa_{μ} .
- Suppress $Z' \rightarrow e^+e^-$? [Mohlabeng, '19]

Electronphobic Z'

Pick electronphobic linear combination of generators

$$\mathsf{U}(1)_\mathsf{B-L} imes \mathsf{U}(1)_\mathsf{L_\mu-L_ au} imes \mathsf{U}(1)_\mathsf{L_\mu+L_ au-2L_e}$$

• Flavor-dependent neutrino scattering on quarks/matter!

- Neutrino oscillation data excludes Δa_μ region!
 [JH, Lindner, Rodejohann, Vogl, '19; Coloma, Gonzalez-Garcia, Maltoni, '21]
- Can't couple to electrons or quarks!

Kinetic mixing

Every U(1)' has kinetic mixing with hypercharge,

$$\mathcal{L} = -\frac{1}{4} \mathsf{F}_{\mu\nu} \mathsf{F}^{\mu\nu} - \frac{1}{4} \mathsf{F}'_{\mu\nu} \mathsf{F}'^{\mu\nu} - \frac{1}{2} \, \epsilon \, \mathsf{F}'_{\mu\nu} \mathsf{F}^{\mu\nu},$$

plus loop-level mixing. [Galison, Manohar, '84; Holdom, '86]

• Couples light Z' to electric current; important for $L_{\mu} - L_{\tau}$, e.g. in direct detection:

$$\sigma_{\chi N} = \frac{Z^2}{A^2} \frac{m_{\mathrm{red},\chi N}^2}{\pi m_{Z'}^4} \left(g' q_{\chi} \right)^2 \left[e \epsilon + \frac{\alpha g'}{3\pi} \log \left(\frac{m_{\tau}^2}{m_{\mu}^2} \right) \right]^2$$

[Kopp, Niro, Schwetz, Zupan, '09; Altmannshofer, Gori, Profumo, Queiroz, '09]

• Can suppress direct detection. [Hapitas, Tuckler, Zhang, 2108.12440]

Muon magnetic moment (theory)

- Dirac: magnetic moment due to spin is $\mathbf{m} = -\mathrm{g}\mu_{\mathsf{B}}\mathbf{S} = -2\mu_{\mathsf{B}}\mathbf{S}$.
- Schwinger '48:

$$g = 2 + \alpha/\pi + \dots$$

• Today: *anomalous* magnetic moment a = (g-2)/2 known to α^5 , plus two-loop order electroweak and hadronic corrections:

$$a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11}$$
. [Aoyama+, 2006.04822]

Main uncertainty: hadronic!
 Lattice QCD groups disagree.

had

[Borsanyi+, 2002.12347]

New physics

• Simplest resolution of Δa_{μ} : copy Schwinger.

New gauge boson Z'.

$$\Delta \mathsf{a}_{\mu} \simeq rac{lpha'}{2\pi} \qquad \Rightarrow \qquad \alpha' \simeq 1.6 imes 10^{-8}$$

Is this allowed?

Too much radiation

• A gauge boson Z' coupled to muons with $\alpha' \simeq 1.6 \times 10^{-8}$ would be thermalized with SM in early Universe. [Dolgov '99]

- Contributes too much radiation density at BBN & CMB. [Planck '18: $\Delta N_{eff} < 0.3$ @ CMB; Fields+ '20: $\Delta N_{eff} < 0.4$ @ BBN]
- Save it by making Z' massive! $M_{Z'} \gtrsim 10 \, \text{MeV sufficient to suppress N}_{\text{eff}}. \,\, \text{[Escudero+ '19]}$ (Can even ameliorate Hubble tension around lower bound.)

• Heavy Z':
$$\Delta a_\mu \simeq {\alpha'\over 3\pi} {m_\mu^2\over {\sf M}_{7'}^2} \quad \Rightarrow \quad {\sf M}_{\sf Z'}/{\sf g}' \simeq 190\,{\sf GeV}\,.$$

At electroweak scale, is this allowed?

Dark matter from $L_{\mu}-L_{\tau}$?

- DM under $U(1)_{L_{\mu}-L_{\tau}}$: stability, Z' mediator, asymmetry(?). [Cirelli, Kadastik, Raidal, Strumia, 0809.2409; Baek, Ko, 0811.1646; Foldenauer, PRD '19; Hapitas, Tuckler, Zhang, 2108.12440; Holst, Hooper, Krnjaic, PRL '22]
- Z' mediator could be light: DM DM → Z' Z'.
 - Large DM self interactions? [Kamada+, '18; JH & Thapa, 2202.08854]
- No constraints from direct detection...
 - ... but could still be captured in neutron stars!
 - NS contain 10⁵⁷ neutrons and 10⁵⁵ muons.
 - Capture for $\sigma_{\text{DM}\mu} > 5 \times 10^{-43} \text{cm}^2$.
 - Also take Pauli blocking and velocities into account.

[**JH**, Garani, 1906.10145]

[Garani, Genolini, Hambye, 1812.08773; Bell, Busoni, Robles, 1904.09803]

DM capture in neutron star?

NS

Scalar~Dirac~Majorana DM

NS

(Muonic) DM in neutron stars

- Easily saturate the capture rate for WIMPs. Then what?
- Asymmetric DM: collect enough to form black hole?
 - Fermi pressure. 🗲

[Kouvaris, Tinyakov, '10, '11]

Repulsive self-interactions.

[Bell, Melatos, Petraki, '13, Bramante, Fukushima, Kumar, '13]

(Muonic) DM in neutron stars

- Easily saturate the capture rate for WIMPs. Then what?
- Asymmetric DM: collect enough to form black hole?
 - Fermi pressure.

[Kouvaris, Tinyakov, '10, '11]

- Repulsive self-interactions. (Bell, Melatos, Petraki, '13, Bramante, Fukushima, Kumar, '13]
- Always: infalling DM heats the NS! (from < 1000K to ~2000K)

[Baryakhtar, Bramante, Li, Linden, Raj, '17; Raj, Tanedo, Yu, '17; Bell, Busoni, Robles, '18/'19]

- Symmetric DM: more heating from DM annihilations.
- Measure IR spectrum of nearby old NS with JWST?

[**JH**, Garani, 1906.10145]

[**JH**, Garani, 1906.10145]

[**JH**, Garani, 1906.10145]

[**JH**, Garani, 1906.10145]

SUSY '22 Julian Heeck 38