

Characteristics of the stop compressed scenario

Ex: stop 4-body decay in 1 lepton final states

 $\Delta m = m(ilde{t}_1) - m(\widetilde{\chi}_1^0) < m(W)$

Compressed scenario:

∆m(stop,neutralino) < 80 GeV

LSP can be WIMP Dark Matter that was depleted in the early universe through co-annihilation process to match the observed DM density

- ISR jet to boost the sparticle pair
- Favors soft decay products that can be jets or leptons
- High p_T^{miss} due to Neutralino escaping undetected

Advances in compressed stop searches at CMS

In this talk we will cover:

CMS-SUS-19-010: Search for top squark production in fully-hadronic final states in proton-proton collisions at √s=13 TeV
 PRD 104, 052001 (2021) | end of 2021

Strategy: Soft b-tag algorithm

• CMS-SUS-18-004: Search for SUSY in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at √s=13 TeV <u>JHEP04(2022)091</u> | Spring 2022

Strategy: Opposite sign lepton pair and soft b-tagged jets

CMS-SUS-21-003: Search for top squarks decaying via the four-body mode in single-lepton final states from Run 2 of the LHC
 CMS-PAS-SUS-21-003 | Preliminary public results Summer 2022

Strategy: **Train 1 BDT per △m**

All-hadronic stop search

- 4bd: Effective four-point interaction
- Chg: Virtual W decays
- 2bd: Loop-induced flavour-changing neutral current charm production

Using a **cut-and-count** approach, this search takes advantage of b-/c-tagging and soft b-tagging algorithms in all-hadronic final states

<u>PRD 104, 052001 (2021)</u>

All-hadronic Signal Region

- Online trigger on p_r^{miss}
- H_T > 300 GeV
- p_T^{miss} > 250 GeV
- p_T ISR > 200 GeV
- Veto leptons
- Bins only accessible through soft b-tag (N_{sv})
- SM Backgrounds estimated and validated from control regions

All-hadronic Exclusion Limits

Excluded top squark masses up to:

- 640 GeV for 4bd model
- 740 GeV for Chg model
- 630 GeV for 2bd model.

PRD 104, 052001 (2021)

Two-leptons stop search

- 4bd: Effective four-point interaction
- Chg: Virtual W decay

Using a **cut-and-count** approach, this search looks for opposite sign lepton pairs final states and soft be tagged jets to probe for 4-body decay and Chargino mediated signal models

<u>JHEP04(2022)091</u>

Two-leptons Signal Region

- Online trigger on p_T^{miss} or di-lep+p_T^{miss}
- Search region is first split in p_T bins
- Soft leptons: $5(3.5) < p_{\tau}(\ell) < 30 \text{ GeV for } e(\mu)$
- H_T > 100 GeV
- $0.66 < p_T^{miss}/H_T < 1.4$
- "tight lepton veto" criteria on the leading jet → realized only by ISR jet
- Veto b-tagged jet with $p_{\tau} > 25$ GeV
- Prompt lepton backgrounds estimated from CRs
- Non-prompt lepton backgrounds estimated from "tight-to-loose" method

Two-leptons Exclusion Limits

Excluded top squark masses up to:

- 540 GeV for 4bd model
- 480 GeV for Chg model

This search has access to both models but is not optimized for. Used to confirm the results from other specified searches

Single-lepton stop search

4bd: Effective four-point interaction

Using a multivariate approach, this search builds the SRs in 2 steps:

- Preselection region: reduce background while preserving signal
- Train a Boosted Decision Tree (BDT) per ∆m region (10 to 80 GeV, in 10 GeV steps) and optimize the cut on the BDT output

Single-lepton Preselection

- Online trigger on p_T^{miss}
- Exactly 1 lepton
- Soft leptons:

$$p_{T}(\ell) > 5(3.5)$$
 GeV for $e(\mu)$

- For Δ m ≤ 60 GeV: $p_{\tau}(\ell)$ < 30 GeV
- H_T > 200 GeV
- p_T^{miss} > 280 GeV
- p_T ISR > 110 GeV

MS-PAS-SUS-21-003 PT [334]

BDT for the determination of the Signal Regions

- 1. Train a BDT per Δm (10 to 80 GeV, in 10 GeV steps):
 - \circ Signal: All the Signal Points (SPs) with the same Δm :
 - \blacksquare SPs with **different** \triangle m have **different** kinematic distributions
 - \blacksquare SPs with the **same** \triangle **m** have **similar** kinematic characteristics
 - Background: WJets+TTbar normalized to XS
- 2. 12 Discriminant variables: $p_T(lep)$, $\eta(lep)$, chg(lep), p_T^{miss} , M_T , N_{jets} , $p_T(jet_1)$, $p_T(jet_b)$, H_T , N_{iets} (b loose), $\Delta R(lep, jet_b)$ & Disc(jet_b)
- 3. Check for overtraining
- Measure signal/background separation as a function of the BDT cut:
 Selection = Preselection && BDT > x
- 5. The optimal **x** is going to be the cut that **maximizes** this separation

 → Thus, **Signal Region** has been determined

repeat once per Δm , per year

MS-PAS-SUS-21-003

Single-lepton SRs determined by the BDT output

BDTs transform the background/signal differences across 12 discriminant variables into a 1-D variable where a cut is set to determine the SR of the respective Δm search region.

Single-lepton Signal Region

- Each signal region determined by Preselection + BDT_{cut}(∆m)
- WJets and TTbar prompt backgrounds predicted by data-driven method
- Non-prompt lepton backgrounds estimated from "tight-to-loose" method

Single-lepton Exclusion Limits

Excluded top squark masses up to:

- 480 GeV at ∆m=10 GeV
- 700 GeV at ∆m=80 GeV

Local significance of 2.5 standard deviations only at $\Delta m=10$ GeV region

Summary

- Presented the latest results on the searches for stop in compressed scenarios with the CMS experiment
- Covered 0-lepton (all-hadronic), 1-lepton and 2-leptons final states of the 4-body decay of stop in this regimen
- Showcased the different search strategies: soft b-tagging, cut-and-count and multivariate approaches
- No hint of SUSY in the compressed scenario, yet
- Run3: increase in luminosity, improvement of reconstruction algorithms for soft physics objects and the use of multivariate techniques → will bring interesting searches opportunities...

...Let's keep looking!

Backup

Soft b-tagging

Based on the presence of a Secondary Vertex (SV) reconstructed with inclusive vertex finder (IVF)

- The distance in the transverse plane between the SV and PV < 3 cm
- The significance of the distance between the SV and the PV is > 4
- The pointing angle, defined as $cos((\overrightarrow{PV,SV},\overrightarrow{p}_{SV}))$ > 0.98, \overrightarrow{p}_{SV} is the total four-momentum of the tracks associated to the SV
- The number of tracks associated to the SV ≥ 3
- The p_⊤ of SV < 20 GeV
- The distance to any jet with $p_T > 20 \text{ GeV} \ge 0.4$ to achieve the orthogonality to the jets and b-tagged jets

All-hadronic search bin definitions

$N_{ m j}$	$N_{\rm b}$	$N_{\rm SV}$	$m_{\mathrm{T}}^{\mathrm{b}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{ISR}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{b}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	Bin number
2–5	0	0		>500	_	$[450, 550, 650, 750, \infty]$	0–3
≥6	0	0		>500	·	$[450, 550, 650, 750, \infty]$	4–7
2–5	0	≥ 1	_	>500		$[450, 550, 650, 750, \infty]$	8–11
≥6	0	≥1	_	>500	_	$[450, 550, 650, 750, \infty]$	12–15
≥2	1	0	<175	300-500	20–40	$[300, 400, 500, 600, \infty]$	16–19
≥2	1	0	<175	300-500	40–70	$[300, 400, 500, 600, \infty]$	20–23
≥2	1	0	<175	>500	20–40	$[450, 550, 650, 750, \infty]$	24–27
≥2	1	0	<175	>500	40–70	$[450, 550, 650, 750, \infty]$	28–31
≥2	1	≥1	<175	>300	20–40	$[300, 400, 500, \infty]$	32–34
≥2	≥2		<175	300-500	40-80	$[300, 400, 500, \infty]$	35–37
≥2	\geq 2		<175	300-500	80–140	$[300, 400, 500, \infty]$	38–40
≥7	≥2		<175	300-500	>140	$[300, 400, 500, \infty]$	41–43
≥2	≥2		<175	>500	40–80	$[450, 550, 650, \infty]$	44–46
≥2	\geq 2	_	<175	>500	80–140	$[450, 550, 650, \infty]$	47–49
≥7	≥2		<175	>300	>140	$[450, 550, 650, \infty]$	50–52

Two-leptons p_T^{miss} SR split

Search region	Low-MET		Med-MET	High-MET	Ultra-MET
	Raw $p_{\rm T}^{\rm miss}$	$p_{ m T}^{ m miss}$			
2ℓ-Ewk	> 125	(125, 200]	(200, 240]	(240, 290]	> 290
2ℓ-Stop	> 125	(125, 200]	(200, 290]	(290,340]	> 340
3ℓ-Ewk	> 125	(125, 200]	-	> 200	

Two-leptons final states

BDT Training Strategy

- 1 Signal points with **different** Δm have **different** kinematic distributions
- 2 Signal points with the **same** Δm have **similar** kinematic characteristics

We take advantage of these 2 properties to aggregate the SPs within the same Δm to gain in stats and use them to <u>train a BDT per Δm (per year)</u>.

Single-lepton training variables

- p_T(lep): lepton (e,µ) p_T
- η(lep): lepton (e,μ) pseudo-rapidity
- chg(lep): lepton (e,µ) charge
- p_T^{miss}: Missing transverse momentum
- M_T: Transverse invariant mass of (p_T^{miss},p_T(lep)) system
- Njets: Number of jets
- p_T(jet₁): Leading jet p_T
- $p_T(jet_b)$: p_T of th jet with the highest b-discriminant
- H_T: scalar sum of the p_T of all jets with p_T > 30 GeV
- Njets(b loose): number of loosely b-tagged jets
- \(\Delta \text{R(lep, jet}_b \)): distance between the lepton and the jet with the highest b-discriminant
- Disc(jet_b): b-discriminant distribution of the jet with the highest b-discriminant

Single-lepton training variables: p_T^{miss}

Single-lepton training variables: $p_{\tau}(I)$

Single-lepton training variables: N_{Jet}

Single-lepton unblinded Signal Region

The 3 main backgrounds (WJets, TTbar and Nonprompt leptons) are estimated from data driven methods