

Searching for Proton Decay with JUNO

Ulrike Fahrendholz¹ on behalf of the JUNO Collaboration

1: Technical University of Munich

The XXIX International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2022)
27.06.2022

Motivation for proton decay search

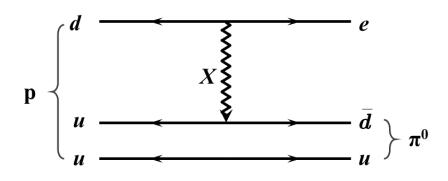
Technische Universität München

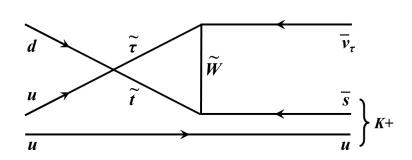
Standard Model

Baryon number is a global symmetry

- Observed matter/anti-matter imbalance in our universe
- Impose Baryon number violation

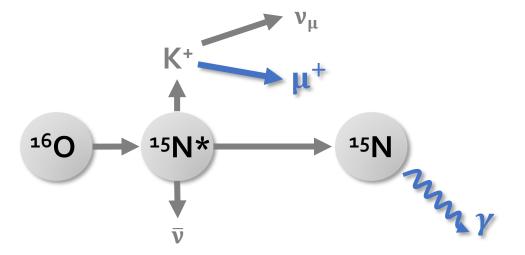
Grand Unified Theories

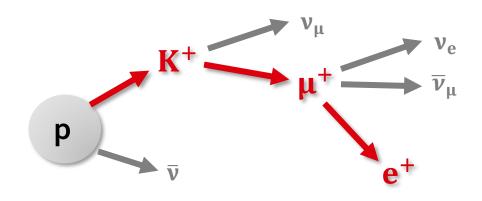

- Conversion reactions between quarks and leptons are possible
- Gauge coupling unification scale of GUTs typically at the order of 10¹⁶ GeV
- -> Test GUTs via Proton Decay studies


$$p \rightarrow \pi^0 + e^+$$

- Leading mode in many non-SUSY GUTs
- Best current limit by Super-Kamiokande: $\tau(p \to \pi^0 e^+) > 1.4 \times 10^{34} \text{ years with 90 \% C.L.}$
- Decay mode with best degree of accuracy

$$p \to K^+ + \bar{\nu}$$


- Favored in many SUSY-GUTs
- Best current limit by Super-Kamiokande: $\tau(p \to K^+ \bar{\nu}) > 5.9 \times 10^{33}$ years with 90 % C.L.
- More than an order of magnitude from prediction


Water-Cherenkov detectors:

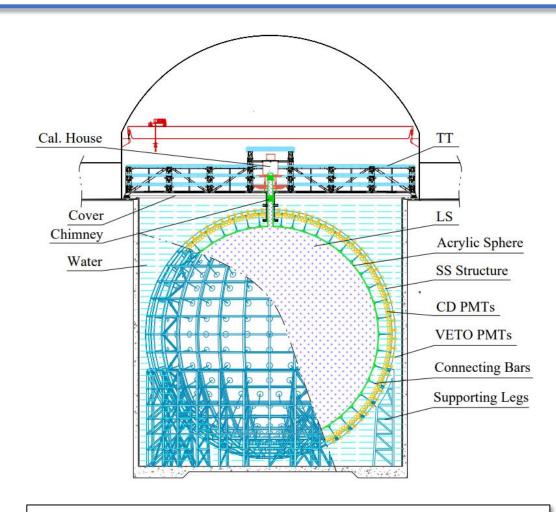
- Kaon energies mainly below the Cherenkov limit
 - -> decay kaons are invisible
- Reconstruct the kaon's decay products
- Photon tagging technique from de-excitation of ¹⁵N

Liquid scintillator detectors:

- Direct measurement of the kaon's scintillation light
- Improved energy resolution
- Loss of directional information

- Multi-purpose neutrino experiment in Southern China
- Excellent energy resolution of 3 % at 1 MeV
- Main goal: determination of the neutrino mass hierarchy
- Other physics goals:
 - Precision measurements on oscillation parameters
 - atmospheric, solar, geo and reactor neutrinos
 - Supernova neutrinos and DSNB

Jiangmen Underground Neutrino Observatory



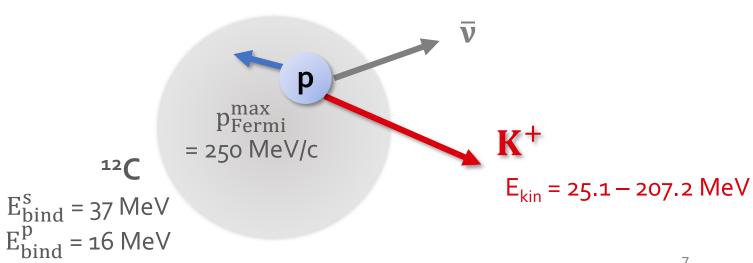
The JUNO detector setup

JUNO LS: LAB + 2.5 g/l PPO + 3 mg/l bisMSB

- 20 kton of liquid scintillator
- PMT array featuring
 - 17600 20 inch PMTs
 - 25600 3 inch PMTs

- Acrylic vessel with thickness of 12 cm and 35.4 m diameter
- Stainless steel holding structure
- Muon veto via top tracker
- 44 m deep water-Cherenkov pool with ~35 kton ultra-pure water
- Water pool instrumented with additional 2400 20 inch PMTs

Decay kinematics

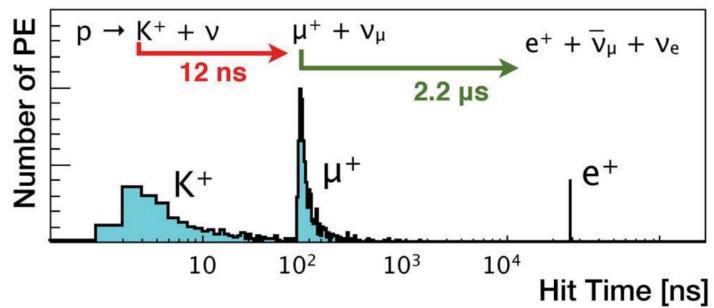


Bound proton decay

Kaon momentum for bound protons influenced by:

- Binding energy
- Fermi momentum
- Interactions with remaining nucleus

Detection principle in JUNO

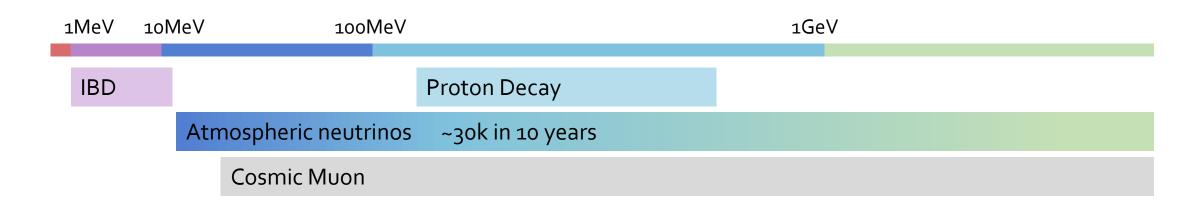


Main kaon decay channels:

•
$$K^+ \to \mu^+ + \nu_{\mu}$$
 (63.43%)
• $K^+ \to \pi^+ + \pi^0$ (21.13%)

•
$$K^+ \to \pi^+ + \pi^0$$
 (21.13%)

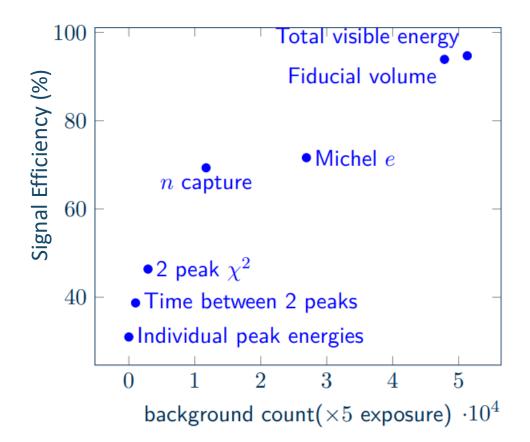
Proton decay event signature in JUNO:


- Prompt K⁺ scintillation signal with well-defined energy
- delayed scintillation signal from K+ daughters with 12 ns time coincidence and well-defined energy
- One and only one decay positron with time coincidence of 2.2 µs to prompt signals
- -> Triple-coincidence with well-defined energies!

Backgrounds

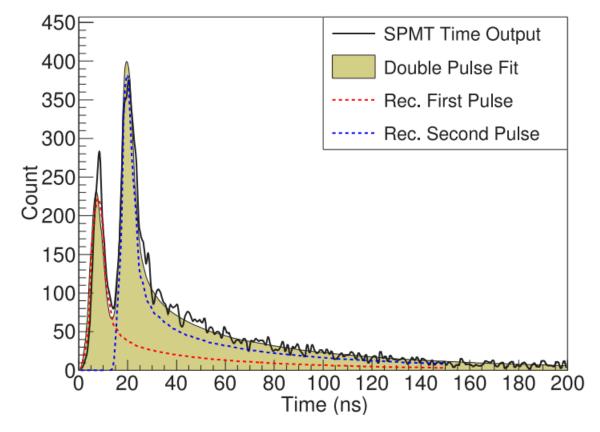
- Most cosmic particle backgrounds shielded by overburden
- Muon veto excluding cosmic muons
- Strong energy, pulse shape and timing cuts can reduce most backgrounds efficiently
- -> Main background left: atmospheric neutrinos

Discriminate muons created from atmospheric ν_{μ} from proton decay daughter events!


Event selection and efficiency

Proposed cuts on proton decay data set:

- Cut on overall visible energy
- Muon veto
- Michel electron selection
- Neutron capture veto

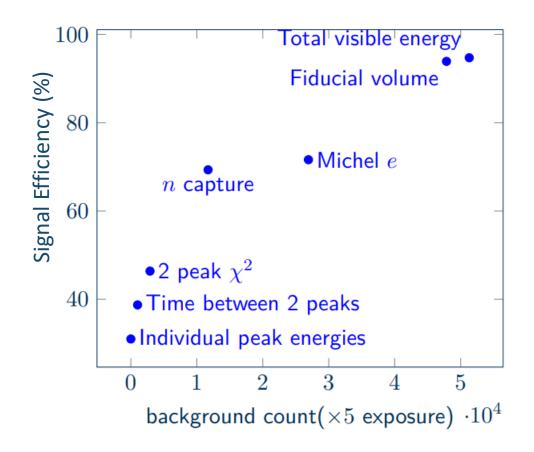

Event selection and efficiency

Proposed cuts on proton decay data set:

- Cut on overall visible energy
- Muon veto
- Michel electron selection
- Neutron capture veto
- Analysis of event's time structure

[arXiv:2203.08771]

Proposed cuts on proton decay data set:


- Cut on overall visible energy
- Muon veto
- Michel electron selection
- Neutron capture veto
- Analysis of event's time structure

Total signal efficiency: 31 %

-> Development of analysis improvement ongoing

JUNO's 10 year sensitivity:

$$\tau(p \to K^+ + \bar{\nu}) > 8.34 \times 10^{33}$$
 years at 90 % C.L.

$$\frac{dy}{dx} = \frac{\frac{dE}{dx}}{1 + k_B \frac{dE}{dx}}$$

- relates a particle's specific energy loss dE/dx to the amount of visible energy from scintillation light dy/dx
- Birk's constant $k_{\rm B}$ includes the quenching probability and the local density of ionized molecules for the traversing particle

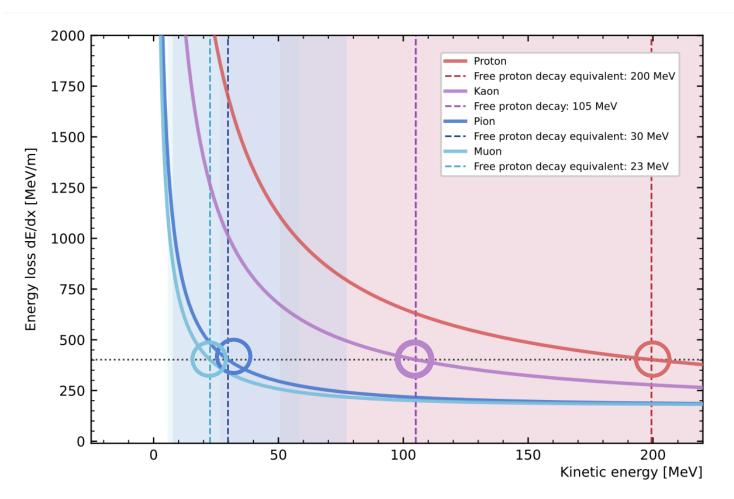
Quenching = The share of deposited energy, which is not converted into scintillation light due to the particle type

Event selection for $p o K^+ + \overline{\nu}$ relies strongly on the kaon and its energy

-> The kaon's k_B is an important value for particle discrimination

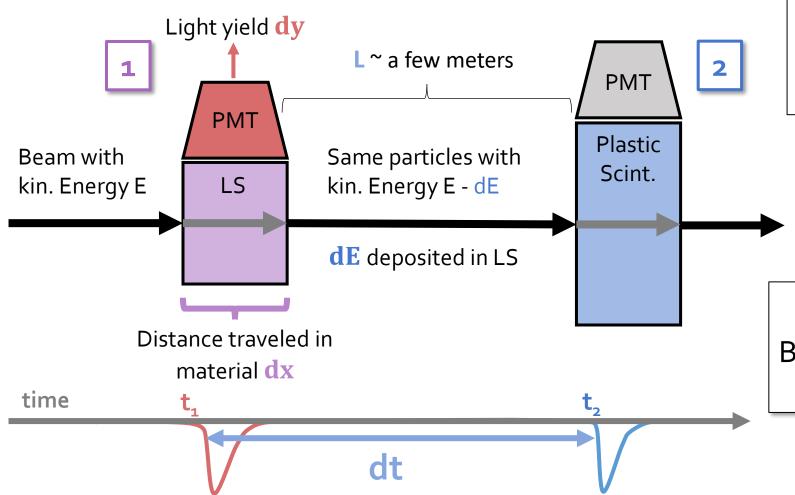
Development of a kaon quenching measurement setup at TUM

Technische Universität München

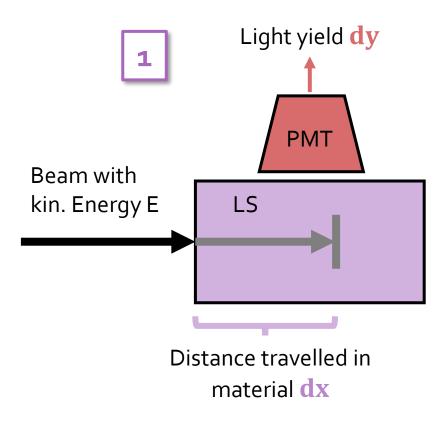


 Due to its short lifetime and the comparably low energy region of interest, producing a fitting kaon beam for quenching measurements remains difficult.

Solution: measure k_B for particles with lower ($\mu \& \pi$) and higher (p) mass and extrapolate Birk's curve for kaons.


- Calculate particle energies refering to kaons dE/dx
- Create data points for different inertial energies and energy losses

Quenching measurement: protons



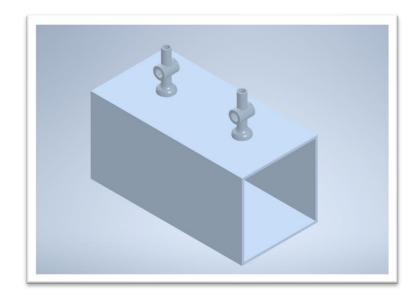
Planning proton beam time at the Proton Irridiation Facility (PIF) of the Paul-Scherrer-Institute in Switzerland.

Get dE from time of flight dt
-> plug into Birk's formula

Birk's law: $\frac{dy}{dx} = \frac{\frac{dE}{dx}}{1 + k_B \frac{dE}{dx}}$

Planning muon and pion beam time at the secondary beamlines of the Paul-Scherrer-Institute in Switzerland.

- Due to low respective energies, the muons and pions will be stopped after short distances in the LS
- -> **dE** = kinetic beam energy E_{beam}
- -> dx from simulations


Birk's law:
$$\frac{dy}{dx} = \frac{\frac{dE}{dx}}{1 + k_B \frac{dE}{dx}}$$

Outlook: Kaon quenching setup

Technische Universität München

Simulations on light collection and detection efficiency as well as of expected timing properties ongoing.

3D-drawing of LS cell

- Final sizes to be determined
- In production

Material compatibility test

- Change of scintillation properties due to contact with foil?
- Change in foil's material properties due to LS?

BSc Thesis: Onur Yonar

- Stainless steel structure finished
- PMT production and testing finished
- Most parts of acrylic vessel ready
- LS purification plants under onsite construction

Data taking is expected to start in the end of 2023

- JUNO aims to exceed SuperKamiokande's limit on the proton decay channel $p \to K^+ + \bar{\nu}$ within 10 years of data taking
- The kaon's quenching factor is a crucial factor in proton decay event selection
- Research on LS characteristics and further improved analysis methods is ongoing

More information on Proton Decay Search with JUNO:

- JUNO Yellow Book: An et al. [JUNO], "Neutrino Physics with JUNO": arXiv:1507.05613
- Dev et al., "Searches for Baryon Number Violation in Neutrino Experiments: A White Paper": arXiv:2203.08771
- To be published: Abusleme et al. [JUNO], "Monte Carlo Simulation of Searching for Proton Decay $p \rightarrow v^T K$ in JUNO"

1: LS detector

- Borosilicate glass cells for LS of different sizes for different energy depositions
- Vacuum-coating with aluminium for higher reflectiveness
- Two low-gain, fast-timing PMTs optically coupled to glass windows
- Front and back enclosed with aluminium coated PET foil to reduce energy loss in walls
- Setup enclosed in a dark box with foil windows for the particle beam

2: TOF detector

- Placed at a few meters distance to LS detector
- Plastic scintillator for fast timing purposes
- Fast timing PMT

Electronics

- Staged coincidence between LS PMTs and TOF PMT for protons
- Double coincidence in LS for muons and pions