Digging Deeper Into SUSY Parameter Space With the CMS Experiment

Devin Mahon on behalf of the CMS Collaboration SUSY 2022 29 June 2022

Outline

- Introduction to Unconventional SUSY
- Presentation of recent CMS Results
 - RPV/Stealth SUSY Top Squark Search
 - Soft τ Lepton Compressed SUSY Spectrum Search
- Summary & Conclusions

Unconventional SUSY Models

- No convincing evidence from traditional SUSY searches
 - ► Most efforts focused on high p_T, high MET signatures
 - What if we've been looking in the wrong places?
 - Consider less conventional parts of the SUSY phase space
- R-parity violating (RPV) SUSY
 - Smaller RPV couplings to SM: LSP decays to SM particles, leaving no MET
- Stealth SUSY
 - New hidden stealth sector weakly coupled to SUSY-breaking sector but with finite couplings to the visible sector
 - Stealth particles and their superpartners are nearly degenerate and thus can decay to SM particles while leaving little MET
- SUSY with compressed spectra
 - Small mass splittings among sparticles lead to soft decay products that require dedicated techniques to achieve sensitivity
 - See upcoming talk by Diogo Bastos: "Searches for top squarks in compressed scenarios"
- Recent CMS to be presented:
 - RPV/Stealth Top Squark Search: Phys. Rev. D 104, 032006
 - Soft τ Lepton Compressed Spectrum Search: Phys. Rev. Lett. 124, 041803

RPV Superpotential Terms

Stealth SUSY Spectrum

Compressed SUSY Spectrum Decay

RPV/Stealth Top Squark Search

- Search for top squarks in the context of RPV and stealth SUSY models with 137 fb⁻¹ (Run 2)
 - RPV: neutralino LSP from top squark decays to light jets via UDD coupling
 - ightharpoonup Stealth: minimal stealth model (SY \overline{Y})
 - ullet One scalar particle ${f S}$, its superpartner ${f ilde S}$, and a portal mediated by a messenger field ${f Y}$
 - 's and \tilde{S} are nearly degenerate, decay of \tilde{S} to S and light \tilde{G} leaves little MET
 - Both models lead to high jet multiplicity and low MET
- Target final state: $t\bar{t} + jets + 1l$
 - ► No MET
 - Lepton from top decay suppresses QCD background
- Previously unexplored phase space at the LHC for low-mass stops and light-flavor jets

RPV/Stealth Search: Analysis Strategy

- Primary discriminating variables: N_{jets} and S_{NN}
 - N_{jets}: jet multiplicity (higher for signal)
 - ► S_{NN}: neural network (NN) score
 - NN trained to separate signal from dominant, irreducible $t\bar{t}+jets$ background
 - ightharpoonup Events separated into 4 bins based on NN score (S_{NN})
 - Gradient reversal technique minimizes dependence on N_{jets}
- N_{jets} distribution is fit using a parametrization from theory
 - Simultaneous fit over all S_{NN} bins
 - ightharpoonup $t\bar{t}$ N_{jets} shape constrained to be the same in each S_{NN} bin
- Background estimation
 - $t\bar{t}$ (~87%): predicted from N_{jets} distribution in data using S_{NN}
 - QCD (~4%): estimated from CR enriched in QCD multi-jet events
 - $t\bar{t} + X$ and other minor backgrounds (~8%): estimated from MC

RPV/Stealth Search: Results

- Largest observed local significance:
 - 2.8 σ for RPV model with $m_{\tilde{t}}$ = 400 GeV

RPV/Stealth Search: Limits & Conclusions

- 95% CL exclusion limits set for stop masses below:
 - ► 670 GeV in the RPV scenario
 - ▶ 870 GeV in the stealth $(SY\overline{Y})$ scenario
- Analysis is systematics dominated
 - ightharpoonup Primary uncertainties include modeling of H_T , jet mass, and jet p_T in $t\bar{t}$ MC and statistical uncertainties on non- $t\bar{t}$ background MC
- Ongoing CMS analyses seek to significantly mitigate the impact of systematic uncertainties and investigate other final states

Soft \(\tau \) Lepton Compressed Spectrum Search

- Dark matter (DM) relic density motivation
 - For a density consistent with measurements, coannihilation (CA) between neutralino LSP and stau to normal matter can be introduced
 - DM relic density very sensitive to $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$ with $\sigma_{\rm CA} \propto e^{-\Delta m}$
 - Observed DM relic density can be achieved in compressed scenarios with $\Delta m \lesssim 50$ GeV
- Search for soft, hadronic tau (τ_h) from $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$, and/or $\tilde{\tau}$ decays in a compressed SUSY spectrum with 77.2 fb⁻¹ (2016-2017 from Run 2)
 - Initial state radiation (ISR) jet ($p_T > 30$ GeV) provides boost that improves acceptance of τ_h
 - Compressed spectrum also leads to high MET from neutrinos (require MET > 230 GeV)
 - Require exactly one soft τ_h candidate (20 < p_T < 40 GeV) and veto b-jets

$$N_{\rm SR} = \sigma \cdot L_{\rm int} \cdot (\epsilon_{\tau_{\rm h}}) \cdot (\epsilon_{E_{\rm T}^{\rm miss}}) \cdot (\epsilon_{\rm ISR}) \cdot (\epsilon_{\rm b-jet})$$

- $Z \rightarrow \mu\mu + ISR$ control region (CR) to understand ISR jet efficiency
 - Boost weights derived to correct for mismodeling of ISR jet based on study of Z p_T
- $W \rightarrow \mu \nu + ISR$ validation region (VR) to understand MET efficiency
 - Boost weights validated in region with real MET
 - Good modeling of ISR jet activity and MET are confirmed
- $Z
 ightarrow au au (o au_{
 m h} au_{
 m h}) + {
 m ISR}$ CR to understand $au_{
 m h}$ ID efficiency

- 4 tt CRs to understand b-jet modeling
 - Different regions differentiated by: $N_{\mathrm{b-jets}}$, au_{h} ID, number of au_{h} charged particle tracks
 - Good modeling of b-jets is observed and a residual systematic uncertainty is derived
- QCD CR to develop a data-driven estimate of QCD contribution in SR due to fake au_h
 - Define a transfer factor based on different ID requirements using data from an additional $W \to \mu \nu + \tau_{\rm h}({\rm fake})$ CR
 - lacktriangle Achieves the proper normalization and $m_{
 m T}$ shape for QCD events

$$N_{\rm SR} = \sigma \cdot L_{\rm int} \cdot (\epsilon_{\tau_{\rm h}}) \cdot (\epsilon_{E_{\rm T}^{\rm miss}}) \cdot (\epsilon_{\rm ISR}) \cdot (\epsilon_{\rm b-jet})$$

- $Z
 ightarrow \mu \mu + ISR$ control region (CR) to understand ISR jet efficiency
 - Boost weights derived to correct for mismodeling of ISR jet based on study of Z p_T
- $W \rightarrow \mu \nu + ISR$ validation region (VR) to understand MET efficiency
 - Boost weights validated in region with real MET
 - Good modeling of ISR jet activity and MET are confirmed
- $Z
 ightarrow au au (o au_{
 m h} au_{
 m h}) + {
 m ISR}$ CR to understand $au_{
 m h}$ ID efficiency

- 4 tt CRs to understand b-jet modeling
 - Different regions differentiated by: $N_{\mathrm{b-jets}}$, au_{h} ID, number of au_{h} charged particle tracks
 - Good modeling of b-jets is observed and a residual systematic uncertainty is derived
- QCD CR to develop a data-driven estimate of QCD contribution in SR due to fake au_h
 - Define a transfer factor based on different ID requirements using data from an additional $W \to \mu \nu + \tau_{\rm h}({\rm fake})$ CR
 - lacktriangle Achieves the proper normalization and $m_{
 m T}$ shape for QCD events

$$N_{\rm SR} = \sigma \cdot L_{\rm int} \cdot (\epsilon_{\tau_{\rm h}}) \cdot (\epsilon_{E_{\rm T}^{\rm miss}}) \cdot (\epsilon_{\rm ISR}) \cdot (\epsilon_{\rm b-jet})$$

- $Z \rightarrow \mu\mu + ISR$ control region (CR) to understand ISR jet efficiency
 - Boost weights derived to correct for mismodeling of ISR jet based on study of Z p_T
- $W \rightarrow \mu \nu + ISR$ validation region (VR) to understand MET efficiency
 - Boost weights validated in region with real MET
 - Good modeling of ISR jet activity and MET are confirmed
- $Z
 ightarrow au au (o au_{
 m h} au_{
 m h}) + {
 m ISR}$ CR to understand $au_{
 m h}$ ID efficiency

- 4 tt CRs to understand b-jet modeling
 - Different regions differentiated by: $N_{\mathrm{b-jets}}$, au_{h} ID, number of au_{h} charged particle tracks
 - Good modeling of b-jets is observed and a residual systematic uncertainty is derived
- QCD CR to develop a data-driven estimate of QCD contribution in SR due to fake au_h
 - Define a transfer factor based on different ID requirements using data from an additional $W \to \mu \nu + \tau_{\rm h}({\rm fake})$ CR
 - lacktriangle Achieves the proper normalization and $m_{
 m T}$ shape for QCD events

$$N_{\rm SR} = \sigma \cdot L_{\rm int} \cdot (\epsilon_{\tau_{\rm h}}) \cdot (\epsilon_{E_{\rm T}^{\rm miss}}) \cdot (\epsilon_{\rm ISR}) \cdot (\epsilon_{\rm b-jet})$$

- $Z
 ightarrow \mu \mu + ISR$ control region (CR) to understand ISR jet efficiency
 - Boost weights derived to correct for mismodeling of ISR jet based on study of Z p_T
- $W \rightarrow \mu \nu + ISR$ validation region (VR) to understand MET efficiency
 - Boost weights validated in region with real MET
 - Good modeling of ISR jet activity and MET are confirmed
- $Z
 ightarrow au au (o au_{
 m h} au_{
 m h}) + {
 m ISR}$ CR to understand $au_{
 m h}$ ID efficiency

- 4 tt CRs to understand b-jet modeling
 - Different regions differentiated by: $N_{\mathrm{b-jets}}$, au_{h} ID, number of au_{h} charged particle tracks
 - Good modeling of b-jets is observed and a residual systematic uncertainty is derived
- QCD CR to develop a data-driven estimate of QCD contribution in SR due to fake au_h
 - Define a transfer factor based on different ID requirements using data from an additional $W \to \mu \nu + \tau_{\rm h}({\rm fake})$ CR
 - lacktriangle Achieves the proper normalization and $m_{
 m T}$ shape for QCD events

Soft \(\tau \) Compressed Search: Results

$$N_{\rm SR} = \sigma \cdot L_{\rm int} \cdot (\epsilon_{\tau_{\rm h}}) \cdot (\epsilon_{E_{\rm T}^{\rm miss}}) \cdot (\epsilon_{\rm ISR}) \cdot (\epsilon_{\rm b-jet})$$

- $Z \rightarrow \mu\mu$ + ISR control region (CR) to understand ISR jet efficiency
 - Boost weights derived to correct for mismodeling of ISR jet based on study of Z p_T
- $W \rightarrow \mu \nu + ISR$ validation region (VR) to understand MET efficiency
 - Boost weights validated in region with real MET
 - Good modeling of ISR jet activity and MET are confirmed
- $Z
 ightarrow au au (o au_{
 m h} au_{
 m h})$ + ISR CR to understand $au_{
 m h}$ ID efficiency
 - Good modeling of τ_h ID is observed and a systematic uncertainty is derived for residual differences
- 4 tī CRs to understand b-jet modeling
 - Different regions differentiated by: $N_{\mathrm{b-jets}}$, τ_{h} ID, number of τ_{h} charged particle tracks
 - Good modeling of b-jets is observed and a residual systematic uncertainty is derived
- QCD CR to develop a data-driven estimate of QCD contribution in SR due to fake $au_{
 m h}$
 - Define a transfer factor based on different ID requirements using data from an additional $W \to \mu \nu + \tau_{\rm h}({\rm fake})$ CR
 - ullet Achieves the proper normalization and $m_{
 m T}$ shape for QCD events

 $\Delta\phi(j_{lead}, E_T^{miss})$

Soft τ Compressed Search: Results

Observed SR data is consistent with SM background

Soft \(\tau \) Compressed Search: Limits & Conclusions

- 95% CL exclusion limits on $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ mass set at 290 GeV for $\Delta m(\chi_1^{\pm},\chi_1^0)$ = 50 GeV
 - Exceeding previous exclusions of ~100 GeV (LEP)
- Cross section exclusions computed for direct stau production
 - For comparisons to previous searches and for reinterpretations

Summary & Conclusions

- Presented two recent CMS searches in unconventional corners of the SUSY parameter space
- RPV/Stealth SUSY Top Squark Search
 - 2.8 σ local significance for RPV model with $m_{\tilde{t}}$ = 400 GeV
 - Limits set at $m_{\tilde{t}}$ = 670 GeV (870 GeV) in the RPV (stealth) scenario
 - New limits in previously unexplored phase space
- Soft τ Lepton Compressed SUSY Spectrum Search
 - Limits set at $m_{\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}}$ = 290 GeV for $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ = 50 GeV, greatly extending beyond previous limits from LEP at ~100 GeV
 - For $m_{\tilde{\tau}}$ = 100 GeV, observed cross section limit is ~10 times theory for $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$ = 25 GeV
- Novel searches and ~200 fb⁻¹ of anticipated new data from Run 3 will significantly extend the reach of CMS's SUSY search program

Backup

RPV/Stealth Search: Event Selection

- Signal region (SR):
 - Optimized to maximize signal significance
 - Selection:
 - ► ≥7 jets
 - ► H_T > 300 GeV
 - ► ≥1 b-jet
 - ► 1 e/µ
 - ► 50 < $m_{b,l}$ < 250 GeV

- Control region (CR):
 - Optimized to be enriched in QCD multi jet events
 - Used to estimate QCD contribution in SR and to validate independence of N_{jets} shape and S_{NN}
 - Selection:
 - ► ≥7 jets
 - ► H_T > 300 GeV
 - ▶ 0 b-jets
 - ▶ 1μ with $p_T > 55$ GeV

RPV/Stealth Search: Systematic Uncertainties

- Dominant uncertainties:
 - Modeling of H_T , jet mass, and jet p_T in $t\bar{t}$ simulation
 - Statistical uncertainties on simulated non-tt̄
 backgrounds
- Analysis is systematics dominated

	t t Minor		RPV
Source of uncertainty	background	background	signal
PDFs	0–1 (2)	0–1 (8)	0–2 (7)
$(\mu_{\rm R}, \mu_{\rm F})$ scales	0–2 (5)	1–8 (18)	0-3 (4)
ISR	0-4 (15)	_	
FSR	0-8 (27)	_	
Color reconnection	0-10 (44)	_	
ME-PS	0-14 (82)	_	
UE tune	0–7 (100)	_	
Pileup	0–2 (7)	0–7 (28)	0–2 (4)
JES	0-4 (18)	5-21 (100)	1–11 (31)
JER	0-2 (10)	1–15 (100)	0-6 (14)
b tagging	0–1 (3)	0-2 (12)	0-2(2)
Lepton efficiencies	0–1 (1)	3–5 (5)	3–4 (4)
H_{T} primary	0-5 (17)	_	_
$H_{ m T}$ validation	0-1 (4)	0–6 (10)	
H_{T} H_{T} -parameterization	0–2 (9)	_	
$H_{\rm T}N_{\rm jets}$ -parameterization	0–7 (27)	_	
Jet p_{T}	0-4 (15)	_	
Jet mass	0-4 (15)	_	
$N_{ m jets}$ shape invariance	0–12 (37)	_	_
Integrated luminosity	_	2.3-2.5	2.3-2.5
Theoretical cross section	_	30	

RPV/Stealth Search: N_{jets} Modeling

$$f(i) = a_2 + \left[\frac{(a_1 - a_2)^{i-7}}{(a_0 - a_2)^{i-9}} \right]^{1/2}$$

Njets-SNN Dependence Modeling

$$R_M = \frac{1}{\mu_i} \frac{M_{\text{all}}}{M_i}$$

RPV/Stealth Search: NN Structure

- NN classifier with gradient reversal (GR) to mitigate N_{jets} dependence
- NN inputs:
 - ⁴ 4-vectors of 7 highest p_T jets and lepton
 - Jet energy-momentum tensor eigenvalues and Fox-Wolfram moments
- ullet Training sample: $tar{t}$ as background, all models as signal

RPV/Stealth Search: NN Input Variable Shapes

Soft τ Compressed Search: Event Selection

Event Selection

- Basic Selection and Event Cleaning
 - noise filters, good primary vertex, etc.
 - MET filters
- ≥ 1 jet with $p_T(j) > 30$ GeV

$$-|\eta(j)| < 2.4$$
 & "Loose" (2016) or "Tight" (2017) ID $-p_T^{ISR}(j) = p_T^{lead}(j) > 100 \text{ GeV}$

- jet cross-cleaned with τ_h ($\Delta R(j, \tau_h) > 0.3$)
- $-E_T^{miss} > 230 \text{ GeV}$
 - PFMet with HF and type-1 corrections, MET-v2 in 2017

$$-N(\tau_h) == 1,20 < p_T(\tau_h) < 40 \text{ GeV}, |\eta(\tau_h)| < 2.1$$

- QCD rejection: $|\Delta \phi(j_{lead}, E_T^{miss})| \ge 0.7$
- 1 prong requirement for au_h + "Tight" MVA isolation
- Veto b-jets: $p_T > 30$ GeV and $|\eta| < 2.4$
- Veto other leptons ("Tight" for μ and "Loose" cut-based for e)
- Trigger: MET trigger (> 99% efficiency w.r.t to our selections)

Phenomenology Reference: Phys. Rev. D 94, 073007

Soft τ Compressed Search: Systematic Uncertainties

Source	W	DY	tī	VV	QCD	Signal
Lumi	2.5	2.5	2.5	2.5	_	2.5
μ ID	< 1	< 1	< 1	< 1	_	1
e ID	< 1	< 1	< 1	< 1	_	1
$ au_h$ ID	6	8	9	9	_	9
Trigger	3	3	3	3	_	3
b ID	2	2	7	2	_	2
JES	s	s	s	s	-	s
TES	s	s	s	s	_	s
MMS	< 1	< 1	< 1	< 1	_	< 1
EES	< 1	< 1	< 1	< 1	ı	< 1
Pileup	5.0	5.0	5.0	5.0	_	5.0
PDF	4.8	4.2	4.2	3.5	_	6.0
bin-by-bin stat.	s	s	s	s	_	s
Closure+Norm.	2	8	6	_	23	_
ISR	s	s	_	_	_	s
Prefiring	_	_	_	_	_	s
Ratio _{Loose}	_	_	_	_	s	_
Gen. Scale	1	1	3.5	_	_	2
Fast Sim.	_	_	_	_	_	S

Values are given as percents "s" indicates a shape uncertainty

