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Outline

• Introduction to Unconventional SUSY

• Presentation of recent CMS Results

‣ RPV/Stealth SUSY Top Squark Search

‣ Soft 𝜏 Lepton Compressed SUSY Spectrum Search


• Summary & Conclusions
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• No convincing evidence from traditional SUSY searches

‣ Most efforts focused on high pT, high MET signatures

‣ What if we’ve been looking in the wrong places? 

‣ Consider less conventional parts of the SUSY phase space


• R-parity violating (RPV) SUSY

‣ Smaller RPV couplings to SM: LSP decays to SM particles, leaving no MET


• Stealth SUSY

‣ New hidden stealth sector weakly coupled to SUSY-breaking sector but with finite 

couplings to the visible sector

‣ Stealth particles and their superpartners are nearly degenerate and thus can decay to SM 

particles while leaving little MET

• SUSY with compressed spectra


‣ Small mass splittings among sparticles lead to soft decay products that require 
dedicated techniques to achieve sensitivity


‣ See upcoming talk by Diogo Bastos: “Searches for top squarks in compressed scenarios”

• Recent CMS to be presented: 


‣ RPV/Stealth Top Squark Search: Phys. Rev. D 104, 032006

‣ Soft 𝜏 Lepton Compressed Spectrum Search: Phys. Rev. Lett. 124, 041803
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Unconventional SUSY Models

RPV Superpotential Terms

Stealth SUSY Spectrum

τ̃

τ

χ̃1
0

Compressed SUSY Spectrum Decay

Soft, hard to reconstruct

decays to SM

nearly 
degenerate

H. Dreiner

J. High Energ. Phys. 2016, 16

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.041803
https://link.springer.com/article/10.1007/JHEP07(2016)016


Devin Mahon

• Search for top squarks in the context of RPV and stealth SUSY models with 137 fb-1 (Run 2)

‣ RPV: neutralino LSP from top squark decays to light jets via UDD coupling

‣ Stealth: minimal stealth model ( ) 


‣ One scalar particle , its superpartner , and a portal mediated by a messenger field 

‣  and  are nearly degenerate, decay of  to  and light  leaves little MET


‣ Both models lead to high jet multiplicity and low MET

• Target final state: 


‣ No MET

‣ Lepton from top decay suppresses QCD background


• Previously unexplored phase space at the LHC for low-mass stops and light-flavor jets

SYY
S S̃ Y

S S̃ S̃ S G̃

tt̄ + jets + 1l
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RPV/Stealth Top Squark Search

RPV Stealth
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• Primary discriminating variables: Njets and SNN

‣ Njets: jet multiplicity (higher for signal)

‣ SNN: neural network (NN) score


‣ NN trained to separate signal from dominant, irreducible  
background


‣ Events separated into 4 bins based on NN score (SNN)

‣ Gradient reversal technique minimizes dependence on Njets


• Njets distribution is fit using a parametrization from theory

‣ Simultaneous fit over all SNN bins

‣  Njets shape constrained to be the same in each SNN bin


• Background estimation

‣  (~87%): predicted from Njets distribution in data using SNN

‣ QCD (~4%): estimated from CR enriched in QCD multi-jet events

‣  and other minor backgrounds (~8%): estimated from MC

tt̄ + jets

tt̄

tt̄

tt̄ + X
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RPV/Stealth Search: Analysis Strategy
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• Largest observed local significance: 

‣ 2.8𝜎 for RPV model with  = 400 GeVmt̃
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RPV/Stealth Search: Results
RPV Significance Scan

Stealth Significance Scan

Njets Background-Only Fits
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• 95% CL exclusion limits set for stop masses below: 

‣ 670 GeV in the RPV scenario

‣ 870 GeV in the stealth ( ) scenario


• Analysis is systematics dominated

‣ Primary uncertainties include modeling of HT, jet mass, and jet pT in  MC and statistical uncertainties on non-  background MC


• Ongoing CMS analyses seek to significantly mitigate the impact of systematic uncertainties and investigate other final states

SYY

tt̄ tt
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RPV/Stealth Search: Limits & Conclusions
RPV Stealth
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• Dark matter (DM) relic density motivation

‣ For a density consistent with measurements, coannihilation (CA) between neutralino LSP and stau to normal matter can be 

introduced

‣ DM relic density very sensitive to  with 

‣ Observed DM relic density can be achieved in compressed scenarios with 50 GeV


• Search for soft, hadronic tau ( ) from , , and/or  decays in a compressed SUSY spectrum with 77.2 fb-1 
(2016-2017 from Run 2)

‣ Initial state radiation (ISR) jet (pT > 30 GeV) provides boost that improves acceptance of 

‣ Compressed spectrum also leads to high MET from neutrinos (require MET > 230 GeV)

‣ Require exactly one soft  candidate (20 < pT < 40 GeV) and veto b-jets

Δm(τ̃, χ̃0
1) σCA ∝ e−Δm

Δm ≲

τh χ̃0
2 χ̃±

1 τ̃

τh

τh
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Soft 𝜏 Lepton Compressed Spectrum Search
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Soft 𝜏 Compressed Search: Background Estimation

NSR = σ ⋅ Lint ⋅ ϵτh
⋅ ϵEmiss

T
⋅ ϵISR ⋅ ϵb−jet

•  control region (CR) to understand ISR jet efficiency

‣ Boost weights derived to correct for mismodeling of ISR jet based on study of Z pT


•  validation region (VR) to understand MET efficiency

‣ Boost weights validated in region with real MET

‣ Good modeling of ISR jet activity and MET are confirmed


•  CR to understand  ID efficiency

‣ Good modeling of  ID is observed and a systematic uncertainty is derived for residual differences


• 4  CRs to understand b-jet modeling

‣ Different regions differentiated by: ,  ID, number of  charged particle tracks

‣ Good modeling of b-jets is observed and a residual systematic uncertainty is derived


• QCD CR to develop a data-driven estimate of QCD contribution in SR due to fake 

‣ Define a transfer factor based on different ID requirements using data from an additional 

 CR

‣ Achieves the proper normalization and  shape for QCD events

Z → μμ + ISR

W → μν + ISR

Z → ττ( → τhτh) + ISR τh

τh

tt̄

Nb−jets τh τh

τh

W → μν + τh(fake)

mT
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Soft 𝜏 Compressed Search: Results

NSR = σ ⋅ Lint ⋅ ϵτh
⋅ ϵEmiss

T
⋅ ϵISR ⋅ ϵb−jet
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• Observed SR data is consistent with SM background
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Soft 𝜏 Compressed Search: Results
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• 95% CL exclusion limits on  /  mass set at 290 GeV for  = 50 GeV

‣ Exceeding previous exclusions of ~100 GeV (LEP)


• Cross section exclusions computed for direct stau production

‣ For comparisons to previous searches and for reinterpretations

χ̃0
2 χ̃±

1 Δm(χ±
1 , χ0

1)
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Soft 𝜏 Compressed Search: Limits & Conclusions
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• Presented two recent CMS searches in unconventional corners of the SUSY parameter space

• RPV/Stealth SUSY Top Squark Search

‣ 2.8𝜎 local significance for RPV model with  = 400 GeV

‣ Limits set at  = 670 GeV (870 GeV) in the RPV (stealth) scenario

‣ New limits in previously unexplored phase space


• Soft 𝜏 Lepton Compressed SUSY Spectrum Search

‣ Limits set at  = 290 GeV for  = 50 GeV, greatly extending beyond previous 

limits from LEP at ~100 GeV

‣ For  = 100 GeV, observed cross section limit is ~10 times theory for  = 25 GeV


• Novel searches and ~200 fb-1 of anticipated new data from Run 3 will significantly extend 
the reach of CMS’s SUSY search program

mt̃

mt̃

mχ̃0
2/χ̃±

1
Δm( χ̃±

1 , χ̃0
1)

mτ̃ Δm(τ̃, χ̃0
1)
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Summary & Conclusions



Backup



Devin Mahon 18

RPV/Stealth Search: Event Selection

• Signal region (SR): 

‣ Optimized to maximize signal 

significance

‣ Selection: 


‣ ≥7 jets

‣ HT > 300 GeV

‣ ≥1 b-jet

‣ 1 e/μ


‣ 50 <  < 250 GeVmb,l

• Control region (CR): 

‣ Optimized to be enriched in QCD multi jet 

events

‣ Used to estimate QCD contribution in SR 

and to validate independence of Njets 
shape and SNN


‣ Selection:

‣ ≥7 jets

‣ HT > 300 GeV

‣ 0 b-jets

‣ 1μ with pT > 55 GeV

CRSR

 (89.6 %)tt

+X (1.6 %)tt
QCD (3.3 %)

Other (5.5 %)

tt +Xtt QCD Other

 (13.1 %)tt

QCD (84.7 %)
+X (0.2 %)tt

Other (2.0 %)
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RPV/Stealth Search: Systematic Uncertainties
• Dominant uncertainties: 

‣ Modeling of HT, jet 

mass, and jet pT in  
simulation


‣ Statistical uncertainties 
on simulated non-  
backgrounds


• Analysis is systematics 
dominated

tt̄

tt̄
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RPV/Stealth Search: Njets Modeling

arXiv:1208.3676v1

RM =
1
μi

Mall

Mi

Njets Parametrization
Njets-SNN Dependence Modeling

https://arxiv.org/abs/1208.3676v1
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RPV/Stealth Search: NN Structure

• NN classifier with gradient reversal (GR) to mitigate 
Njets dependence


• NN inputs: 

‣ 4-vectors of 7 highest pT jets and lepton

‣ Jet energy-momentum tensor eigenvalues and Fox-

Wolfram moments


• Training sample:  as background, all models as signaltt̄

With GR

Without GR
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RPV/Stealth Search: NN Input Variable Shapes

0 200 400 600 800 1000 1200 1400
 [GeV]

T
Leading Jet p

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14A.
U

.

 = 450 GeVt~ RPV m  = 850 GeVt~  mYStealth SY tt

CMSSimulation Supplementary
arXiv:2102.06976

2017 (13 TeV)

0 20 40 60 80 100 120 140 160 180 200
Leading Jet mass [GeV]

0

0.1

0.2

0.3

0.4

0.5

0.6A.
U

.

 = 450 GeVt~ RPV m  = 850 GeVt~  mYStealth SY tt

CMSSimulation Supplementary
arXiv:2102.06976

2017 (13 TeV)

6− 4− 2− 0 2 4 6
ηLeading Jet 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07A.
U

.

 = 450 GeVt~ RPV m  = 850 GeVt~  mYStealth SY tt

CMSSimulation Supplementary
arXiv:2102.06976

2017 (13 TeV)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JMT0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

A.
U

.

 = 450 GeVt~ RPV m  = 850 GeVt~  mYStealth SY tt

CMSSimulation Supplementary
arXiv:2102.06976

2017 (13 TeV)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JMT1

0

0.02

0.04

0.06

0.08

0.1

0.12

A.
U

.

 = 450 GeVt~ RPV m  = 850 GeVt~  mYStealth SY tt

CMSSimulation Supplementary
arXiv:2102.06976

2017 (13 TeV)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FWM2

0

0.02

0.04

0.06

0.08

0.1A.
U

.

 = 450 GeVt~ RPV m  = 850 GeVt~  mYStealth SY tt

CMSSimulation Supplementary
arXiv:2102.06976

2017 (13 TeV)



Devin Mahon 23

Soft 𝜏 Compressed Search: Event Selection

Phenomenology Reference: 

Phys. Rev. D 94, 073007

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.073007
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Soft 𝜏 Compressed Search: Systematic Uncertainties

Values are given as percents

“s” indicates a shape uncertainty


