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Introduction



Introduction
Why do we study the production of PBHs and GWs ?

▶ The detection of Gravitational Waves (GWs) by a binary black hole merge by LIGO/VIRGO
rekindles the old study of the Primordial Black Holes (PBHs).

▶ As a result there are numerous recent studies which show that the origin of PBHs can explain
a fraction of Dark Matter (DM) in the Universe.

▶ The signal of the GWs is expected to be detected by future space-based GW interferometers
such as LISA, BBO and DECIGO.

▶ Both the generation of PBHs and GWs can be explained in the framework of inflation. It is
proposed that a significant amplification in the scalar power spectrum can explain both
PBHs and GWs.
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Constraints on the inflationary models
▶ The new theoretical models which have been proposed for explaining the generation of

PBHs and GWs have to be in accordance with observable constraints on inflation released by
Planck collaboration. [A&A 641 (2020)A10]
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▶ Models based on Starobinsky-like potential give acceptable values for the spectral index ns
and tensor-to-scalar ratio r.

▶ Models which leads to Starobinsky-like effective scalar potential can be found through
no-scale supergravity (SUGRA) theory. 3



How to obtain an enhancement in scalar power
spectrum

We investigate three different mechanisms in order to obtain an amplification
in scalar power spectrum:

1. An inflection point in the potential.
2. Steep step-like potential.
3. Models with a waterfall trajectory.

We match each mechanism with a model based on SUGRA theory in order to
obtain an explicit model which respects the observable constraints:

1. No-Scale SUGRA Theory.
2. α-Attractor SUGRA.
3. Hybrid model with SUGRA corrections.
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An inflection point in the
potential



Inflection point in the scalar potential
Significant peaks in the scalar power spectrum, which can interpret the production of PBHs & GWs,
can be produced by a near inflection point in the scalar potential.

This inflection point:
dV(χinf )
dχinf

≃ 0, d2V(χinf )
dχ2

inf
= 0 .

Pros:

• Simple mechanism for single field inflation & many recent works have adopted it.
• Provides significant results for abundances of PBHs and GWs.

Cons:

• Fine-tuning is required in order to achieve the proper peak in scalar power spectrum.

▶ We apply this mechanism to no-scale SUGRA.
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Basic aspects of no-scale theory
The general Lagrangian in the context of SUGRA:

L = K j̄i∂µφ
i∂µφ̄̄j − V(φ, φ̄). (1)

The F-term of the scalar potential:

V = eK(DφWKφ̄φDφ̄W̄ − 3|W|2) (2)

where K is the Kähler potential,W is the superpotential and D is the covariant derivative.

▶ The cosmological constant vanishes due to the identity:
Kφφ̄KφKφ̄ = 3.

A flat potent can be found by the Kähler potential [Cremmer et. al. (1983)]:

K = −3 ln(φ+ φ̄). (3)

▶ Considerφ = (y + 1)/(y − 1), we derive K = −3 ln
(

1 − |y|2

3

)
, which is invariant under

the transformation of y → (αy + β)/(β̄y + ᾱ), |α|2 − |β|2 = 1. SU(1,1)
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SU(1,1) group for a vanishing cosmological constant:

K = −3 ln(φ+ φ̄) or K = −3 ln(1 − |y|2

3 )
[Ellis, Kounnas, Nanopoulos (1984)]

SU(2,1)/SU(2)×U(1) group for finding Starobinsky-like scalar potential:

K = −3 ln(1 − |y1|2

3 − |y2|2

3 ) or K = −3 ln(T + T̄ − |φ|2

3 )

WWZ =
(

µ̂
2

(
y2

1 +
y2

1y2√
3

)
− λ

y3
1

3

)
or WC = m

(
− y1y2 +

y2y2
1

l
√

3

)
where (y1, y2) →

(
2φ

1+2T ,
√

3
(

1−2T
1+2T

))
and

W(T, φ) → W̄(y1, y2) = (1 + y2/
√

3)3W
[Ellis, Nanopoulos, Olive, Verner (2018)]

SU(2,1)/SU(2)×U(1) group for explaining the generation of PBHs & GWs:

K = −3 ln(1 − |y1|2

3 − |y2|2

3 ) or K = −3 ln(T + T̄ − |φ|2

3 )

W1 =
(

µ̂
2

(
y2

1 +
y2

1y2√
3

)
− λ

y3
1

3

)(
1 + g1(y1)

)
or W2 = m

(
− y1y2 +

y2y2
1

l
√

3

)(
1 + g2(y1)

)
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Superpotentials

W1 =
(
µ̂
2

(
y2

1 +
y2

1y2√
3

)
− λ

y3
1

3

)
(1 + e−b1y2

1 (c1y2
1 + c2y4

1))&

W2 = m
(
− y1y2 +

y2y2
1

l
√

3

)
(1 + c3e−b2y2

1y2
1)

BRANCH I
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𝑦1 ↔ −𝑦1, 𝑦2↔ −𝑦2

𝑦
1
↔

−
𝑦
2 ,

𝑦
2
↔

𝑦
1

𝑦
1
↔

−
𝑦
2
,
𝑦
2
↔

𝑦
1

𝐾 = −3 ln 1 −
𝑦1

2 + 𝑦2
2

3

𝐾 = −3 ln 𝑇 + ത𝑇 −
𝜑 2

3

𝑦1, 𝑦2 → 𝑇, 𝜑

W1 in 𝑇, 𝜑 basis

𝑇 =
1

2
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𝜑 = 3 tanh
𝑥
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Scalar Power Spectrum
• The scalar power spectrum:

PR =
k3

2π2 |Rk|2 , (4)

where Rk is the comoving curvature perturbation:

Rk = Ψ+ δϕ
ϕ′ .

• The power spectra for the casesW1 &W2: [V. C. Spanos, IDS(2022)]
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We notice that the scalar power spectum has a significant enhancement due to
inflection point. 9



Evaluating the production of PBHs
• We assume that PBHs are formed in the radiation dominated era.
• The present fraction of PBHs is given from:

ΩPBH

ΩDM
=
β(MPBH(k))
8 × 10−16

(
γ

0.2

)3/2 ( g
106.75

)−1/4 ( MPBH(k)
10−18grams

)−1/2
. (5)

The mass is given as a function of k mode:

MPBH(k) = 1018
(
γ

0.2

)(
g

106.75

)−1/6 ( k
7 × 1013Mpc−1

)−2
. (6)

• The fractional abundance of PBHs for the casesW1 &W2:
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Energy density of GWs
• The energy density of the GWs is given: [Espinosa, Racco, Riotto (2019)]

ΩGW(k) =
Ωr

36

∫ 1√
3

0
dd
∫ ∞

1√
3

ds
[
(s2 − 1/3)(d2 − 1/3)

s2 + d2

]2
×

PR

(
k
√

3
2

(s+ d)

)
PR

(
k
√

3
2

(s+ d)

)
(I2c + I2s )

(7)

where the radiation density Ωr ≈ 5.4 × 10−5. The functions Ic and Is are given:

Ic = −36π (s2+d2−2)2

(s2−d2)3 θ(s− 1), Is = −36 (s2+d2−2)2

(s2−d2)2

[
(s2+d2−2)
(s2−d2)

log
∣∣∣ d2−1
s2−1

∣∣∣+ 2
]
.

• The energy density of GWs for the casesW1 &W2: [V. C. Spanos, IDS(2022)]
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Steep step-like potential



Step-like potential
The reinforcement in the scalar power spectrum can be achieved from the potential: [K.Kefala,
G.P. Kodaxis, N.Tetradis, IDS(2020)]

V(φ) = V0

(
1 +

1
2
∑
i

Ai (1 + tanh [ci (φ− φi)])

)
,

where Ai, ci,φi and V0 are the parameters.
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An explicit model
• There are studies of production of PBHs fromα attractors SUGRA
[Dalianis, Kehagias, Tringas (2018)]

• These models are based on the scheme: [Kallosh, Linde, Roest (2014)]

K = −3αln
(

1 −
|S|2 + |Φ|2

3
−

g|S|4

3 − |Φ|2
)
, W = Sf

(
Φ
√

3

)(
3 − Φ2)(3α−1)/2

.

If we consider the direction of inflation as:

ReΦ = φ, ImΦ = S = 0

the Lagrangian takes the form:

L =
√
−g
[

1
2R− 1

2∂µφ∂
µφ− F2

(
tanh φ√

6α

)]
.

Therefore the potential is given:

V(φ) = F2(tanh φ√
6 ).

• In our study we consider: [I. Dalianis, G. P. Kodaxis, N. Tetradis, A. Tsigkas-Kouvelis, IDS(2021)]

F(x) = F0
(
x +

∑n
i ci tanh [d(x − xi)]

)
.

The values of ns and r can be predicted to be in accordance with observables.
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Production of GWs
We obtain oscillation feautures in the energy density of GWs.

3 STEPS

4 STEPS
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Model with a waterfall
trajectory



Basic aspect in hybrid models
The hybrid model is derived by the globally supersymmetric (SUSY) renormalizable superpotential:
[Copeland, Liddle, Lyth, Stewart, Wands (1994)]

W = κ S(Ψ̄1Ψ2 −m2) . (8)

The F-term SUSY potential takes the form:

VSUSY
F = κ2

[(
ψ2 −m2)2

+ ϕ2ψ2
]

(9)

where we have assumed |S| = ϕ/
√

2 and |Ψ1| = |Ψ̄2| = ψ. The fieldψ develops tachyonic
solutions, if

κ2(−2m2 + ϕ2 + 6ψ2) < 0 .

Along the flat direction (ψ = 0) we have:

ϕ2 < ϕ2
c = 2m2 ≡ M2 ,

where ϕc is the critical value of the field ϕ, after which this fieldψ becomes tachyonic.
✘ Hybrid models predict spectral index ns = 1.
✓ One loop corrections for ns < 1. [Dvali, Shafi, Schaefer (1994)]

We can use SUGRA corrections for obtaining an acceptable value for ns.
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SUGRA corrections
• SUGRA correction in the context of hybrid inflation had been studied. [Lazarides, Tetradis (1998)]
• We assume SUGRA corrections in order to obtain acceptable ns. We consider the following Kähler
potential: [V. C. Spanos, IDS(2021)]

K = SS̄+ b1(S+ S̄) + b2(S+ S̄)2 +
1
2
Ψ1Ψ̄1 +

1
2
Ψ2Ψ̄2 .

The general F-term of scalar potential is

VSUGRA
F = eK/MP

2
[(
K−1)i

j̄

(
W j̄ +

WK j̄

MP2

)(
W̄i +

W̄Ki
MP2

)
−

3|W|2

MP2

]
,

and it takes the form:

VSUGRA
F =

κ2(M4 − 4M2ψ2 + 4ψ2ϕ2 + 4ψ4)

4 + 8b2
+

A1
M2
P
+

A2
M4
P
+O

(
1
M6
P

)
,

where S = ϕ√
2+4b2

and |Ψ1| = |Ψ̄2| = ψ.
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• The inflaton field ϕ slowly rolls through the valley until it reaches the critical point. After that the
waterfall fieldψ acquires tachyonic solutions.
•The potential of our proposed model, the prediction of observable constraints and the evolution
of the fields: (• b1 = 3.51 × 10−4MP, b2 = −3.5,M = 0.05MP and

• b1 = 8.92 × 10−4MP, b2 = −5.0,M = 0.1MP ).
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• The waterfall trajectory in the framework of hybrid inflation in order to explain the production of
PBHs have been previous been studied. [Clesse & Bellido (2015)] 17



Generation of PBHs & GWs
For the previous sets we evaluate the amount of PBHs and GWs.
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▶ The set 1 satisfies the NANOGrav signal and it can explain the 1% of the Dark Matter in the
Universe. This is due to restriction era of HSC etc.

▶ The set 2 can explain both the whole DM though hybrid model and LISA, DECIGO etc.
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Conclusions-Perspectives

In this presentation:

▶ We present three different mechanisms in order to obtain an enhancement in scalar power
spectrum

1. An inflection point in potential
2. Steep step-like potential
3. Waterfall trajectory in the context of hybrid inflation

▶ All models proposed give us acceptable values for the observable constraints of inflation.
▶ We evaluate the power spectrum in our models and we find significant peaks.
▶ We evaluate the abundances of PBHs and GWs by using the scalar power spectra.

Perspectives
A study in order to explain the generation of PBHs as well as the GWs without fine-tuning .
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Thank you!
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